

DIALABLE CRYPTOGRAPHY FOR WIRELESS NETWORKS

THESIS

Marnita Thompson Eaddie, Major, USAF

AFIT/GCO/ENG/08-02

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the U.S.
Government.

AFIT/GCO/ENG/08-02

DIALABLE CRYPTOGRAPHY FOR WIRELESS NETWORKS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Marnita Thompson Eaddie

Major, USAF

March 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCO/ENG/08-02

DIALABLE CRYPTOGRAPHY FOR WIRELESS NETWORKS

Marnita Thompson Eaddie
Major, USAF

Approved:

 // signed // March 6, 2008
Dr. Kenneth M. Hopkinson, PhD (Chairman) Date

 // signed // March 6, 2008
Lt Col Stuart H. Kurkowski, PhD, USAF (Member) Date

 // signed // March 6, 2008
Capt Ryan W. Thomas, PhD, USAF (Member) Date

AFIT/GCO/ENG/08-02

Abstract

The objective of this research is to develop an adaptive cryptographic protocol,

which allows users to select an optimal cryptographic strength and algorithm based upon

the hardware and bandwidth available and allows users to reason about the level of

security versus the system throughput. In this constantly technically-improving society,

the ability to communicate via wireless technology provides an avenue for delivering

information at anytime nearly anywhere. Sensitive or classified information can be

transferred wirelessly across unsecured channels by using cryptographic algorithms. The

research presented will focus on dynamically selecting optimal cryptographic algorithms

and cryptographic strengths based upon the hardware and bandwidth available. The

research will explore the performance of transferring information using various

cryptographic algorithms and strengths using different CPU and bandwidths on various

sized packets or files.

This research will provide a foundation for dynamically selecting cryptographic

algorithms and key sizes. The conclusion of the research provides a selection process for

users to determine the best cryptographic algorithms and strengths to send desired

information without waiting for information security personnel to determine the required

method for transferring. This capability will be an important stepping stone towards the

military’s vision of future Net-Centric Warfare capabilities.

iv

AFIT/GCO/ENG/08-02

Dedication

This work is dedicated to my husband, my four wonderful children, and to my mother.
Their steadfast love and support never wavered; and they always believed that I could
achieve my goal.

v

vi

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Dr. Kenneth

Hopkinson, for his guidance and support throughout the course of this thesis effort. His

insight and experience into my thesis topic was highly beneficial. Special thanks as well

to Matt Weeks for the initial writing of the gpgTester code used in this research. I also

thank my sponsor, Mr. Robert Bonneau, from the Air Force Office of Scientific Research

for both the support and latitude provided to me in this endeavor.

 Marnita Thompson Eaddie

.

Quote

“If plans related to secret operations are prematurely divulged the agent and all those to
whom he spoke of them shall be put to death.”

Sun Tzu

Art of War page 147, no 15

vii

Table of Contents

Page

Abstract .. iv

Dedication ..v

Acknowledgments.. vi

Acknowledgments.. vi

Quote... vii

List of Figures ..x

List of Tables .. xii

Acronyms... xiii

I. Introduction ...1

1.1 Motivation ...1

1.2 Overview of Adaptive Security...2

1.3 Military Requirement for Wireless Technology ...4

1.4 Overview of Research ...5

II. Literature Review...7

2.1 Underlying Theme...7

2.2 DSOCARE ..8

2.3 MANET Frameworks/Models...9

2.4 WAHSN ..11

2.5 DRE...12

2.6 Parallel Disk Systems Model ..13

2.7 AdaptCrypt ..13

2.9 Context-Based Security...14

2.10 SAM...15

viii

ix

Page

III. Methodology ...16

3.1 Methodology Overview...16

3.2 gpgTester (Step One) ..19

3.3 MatLab Interpolation (Step Two) ...25

3.4 MatLabController (Step Three)...30

3.5 NS-2 Simulations (Step Four) ...52

IV. Analysis and Results...56

4.1 Analysis Overview ..56

4.2 gpgTester Results (Step One)..56

4.3 MatLab Interpolation (Step Two) ...78

4.4 MatLab Controller (Step Three)..80

4.5 Analysis of NS-2 Simulations (Step Four)..92

4.6 Comparison of Binary Solver and Non-Binary Solver93

V. Conclusions and Recommendations ..96

5.1 Summary of Research ...96

5.2 Future Research...97

5.3 Significance of Research...98

Appendix 1 GpgTester ...101

Appendix 2 List of Computer Code Generated..103

Bibliography ..106

Vita ..109

List of Figures

Page

Figure 1: Thesis Objective .. 5

Figure 2. Detailed Thesis Objective... 17

Figure 3: Overall Methodology Flowchart .. 18

Figure 4: Initial Data Generation .. 25

Figure 5. Data Interpolation Overview .. 26

Figure 6. MatLab Controller Overview ... 32

Figure 7. Dial Settings for Controller One... 36

Figure 8. Simple Network Diagram... 53

Figure 9. NS-2 and MatLab Transfer of Information .. 54

Figure 10. File Size Differences for Random Files ... 61

Figure 11. Comparison of Public Key File Size Differences... 62

Figure 12. RSA Random File Size Compression Comparisons 65

Figure 13. RSA Non-Random File Size Compression Comparisons 66

Figure 14. RSA Random File Size Difference Standard Deviation................................. 67

Figure 15. 3DES Random File Size Difference Standard Deviation............................... 67

Figure 16. Non-Random RSA File Size Difference Standard Deviations....................... 68

Figure 17. Bzip2 Non-Random File Size Difference Deviations 69

Figure 18. Symmetric Encryption for Random Files to 100MB 70

Figure 19. Symmetric Encryption for Random Files to 100MB 71

Figure 20. RSA and Elg-E 10MB Encryption Time.. 73

x

xi

Page

Figure 21. RSA vs. Elg-E Decryption Time Comparisons.. 74

Figure 22. AES Non-Random File Compressed Comparisons.. 74

Figure 23. Elg-E Non-Random Compression Comparisons.. 75

Figure 24. TwoFish Cubic Spline for Encryption.. 79

Figure 25. RSA Cubic Spline for Output File Size.. 80

Figure 26. Gamma Distribution for File Sizes... 81

Figure 27. Modified Gamma Distribution for File Size .. 82

Figure 28. Uniform Distribution of Commodity Priorities.. 83

Figure 29. MatLab Files Interaction .. 105

List of Tables

Page

Table 1: gpgTester Scenario ... 22

Table 2. Sample Commodity Matrix ... 33

Table 3. Sample Input File for Controller One .. 35

Table 4. Sample Input File for Controller Two ... 47

Table 5. Sample Input File for Controller Three ... 49

Table 6. Elg-E Sample Output from gpgTester ... 57

Table 7. Sample Averaged Output for AES Scenarios .. 58

Table 8. Sample File Size Differences for Symmetric Algorithms 60

Table 9. Sample Random File Size Difference Comparison ... 63

Table 10. Sample Non-Random File Size Difference Comparison................................. 64

Table 11. Symmetric Encryption (msec) for Random File Sizes 72

Table 12. Security and Performance Levels for Controller One 76

Table 13. Security and Performance Levels for Controller Three................................... 77

Table 14. Testing1.m Sample File Output ... 78

Table 15. Sample Output from Controller One ... 85

Table 16. Sample Output File for Controller Two... 88

Table 17. Sample Commodities to Send for Controller Two .. 90

Table 18. Compilation of Controller Two Output ... 91

Table 19. Sample Comparison of Controllers.. 94

xii

Acronyms

3DES: Triple Data Encryption Standard

AES: Advanced Encryption Standard

ASM: Adaptive Security Model

ASPAD: Adaptive Quality of Security Control Scheme

DRE: Distributed Real-time Embedded

DSOCARE: Dynamic Selector of Optimal Cryptographic Algorithms in a Runtime

Environment

ELG-E: ElGamal

GPG: GNU Privacy Guard

HANC: Hybrid Agent for Network Control

MANET: Mobile Ad-hoc Network

NetA: Network Attack

NetD: Network Defense

PI: Performance Index

ROCAS: Runtime Optimal Cryptographic Algorithm Selector

RSA: Rivest, Shamir, and Adleman

RTES: Real Time Embedded System

SI: Security Index

SoD: Strength of Defense

SPI: Service Provision Index

xiii

xiv

SSTT: Systematic Security and Timeliness Tradeoffs

WAHSN: Wireless Ad-Hoc and Sensor Network

DIALABLE CRYPTOGRAPHY FOR WIRELESS NETWORKS

I. Introduction

1.1 Motivation

Cryptography continues to play a major role in the military and in the public

sector. The utilization of cryptography has existed for centuries. Early Egyptians used

hieroglyphics on tombs as riddles or puzzles for visitors to decipher. Around 1500 B.C.,

scribes from Mesopotamia used encrypted cuneiform tablets for keeping pottery glaze

formulas secret. The first known use of cryptography for military communication was in

475 B.C when the Spartans used the transposition cipher (Mollin, 2005).

Military communications continue to use forms of cryptography. Examples

include the substitution cipher used by Julius Caesar, the wheel cipher invented by

Thomas Jefferson, the Playfair cipher used by the British Foreign Office in the 1800s,

forms of Vigenere ciphers used by the Confederate army, and the Enigma machine used

by the Germans during World War II (Mollin, 2005).

From ancient history to present day, cryptography has enabled people to

communicate secretly with some confidence in the chosen cryptographic scheme to

assume that adversaries will be unable to interpret the communication in a timely manner.

The basic need for cryptography has not changed since its integration with technology

but the schemes have evolved as we become more complex and demand more complex

1

technology. Static security methods and statically chosen cryptographic schemes cannot

adjust to changing environmental factors especially in the wireless environment. To meet

dynamic environmental security requirements an adaptive approach is necessary.

Adaptive security using cryptography is one method to affect the security posture of

dynamic environments.

1.2 Overview of Adaptive Security

Adaptive security is a collection of traditional security measures, vulnerability

monitoring, detection, and response. Adaptive security can be manual or automatic

although a manual method does not allow for responding quickly in a fast changing

environment. Automatic methods delve into the arena of evolutionary computing where

patterns in the biological world are observed and modeled including dynamic learning,

dynamic decision-making, self-guidance, and self-repair. Evolutionary computing should

be able to handle the future optimization and security challenges that arise with increased

technology including the distribution, scale (micro to massive), autonomy, and mobility

of systems.

Using adaptive security, a system can exist in a less secure but higher performing

state for normal operation and then can adapt to a more secure and usually less

performing state when negative factors arise within or outside the system (Hinton,

unpublished). Because it is adaptive, the system can utilize different cryptographic

algorithms.

With adaptive security, a fine balance must be struck between security

(cryptographic computations) and performance, or, for distributed real-time embedded

2

(DRE), between real-time monitoring and cryptographic computations competing for

computational time and resources. This inherent overhead from cryptographic

computations can strain the infrastructure. In addition, the security schemes used can

also affect the system throughput and latencies that can potentially make networked

applications more vulnerable to attacks or denial of services. Research is under way to

solve various adaptive security problems involving runtime environments, mobile ad-hoc

networks, networked parallel disk systems, and real-time embedded systems utilizing

various schemes (e.g. Alampalayam, 2003; Soliman, 2005; Raissi, 2006; and Nijim,

2006). The research in this thesis focuses on allowing users to initiate ‘dialable’

cryptography for dynamic networks including wireless networks.

The idea of dynamically changing the security of a system is important in wireless

ad hoc and sensor networks where critical resources such as battery life, memory,

computational power, and bandwidth are not constant nor necessarily predictable.

Mobile ad hoc networks are also susceptible to intrusion, eavesdropping, and selfishness

(where one node may demand and receive more resources than another) (Chigan, 2004).

For these vulnerable wireless enabled networks or systems, confidentiality, integrity, and

authentication is critical. If the systems include distributed real-time embedded (DRE)

applications it becomes even more crucial to verify that adversaries have not read data

(confidentiality), have not modified data (integrity), nor claim false identity

(authentication). These systems or applications rely heavily on cryptographic schemes

for information processing. DREs need to report the real world status to the proper

personnel. Examples of DREs include electric grid management (report on electric grid

3

status for determining energy supply plans) and defense applications (report on the

battlefield to military control center for preparing overall battle tactics).

1.3 Military Requirement for Wireless Technology

Cryptography is an important player in wireless technology which in turn plays a

crucial role in the military. “One would be hard-pressed to name a wireless technology

that didn’t have its beginnings in the military world” (Blyler, 2004). The military is, of

course, concerned with information operations.

A subset of information operations is Computer Network Defense. “NetD

operations protect and defend friendly information systems, computer networks, and

information transiting within them. In addition, they protect against the NetA (Computer

Network Attack) capabilities of others” (Franz, 2007). Presently, network personnel

concentrate NetD efforts predominantly on the NIPRNET. However, non-wired

technology is increasing exponentially. “Military worldwide are moving toward the

concept of network-centric operations: networking their forces with wireless

communications technologies to increase combat effectiveness” (Pucker, 2007).

Bandwidth intensive applications like video teleconferencing, secure telephony, and

imagery transfers are now requirements we expect in military communications and

networks to increase situational awareness. These networks allow easy installation,

lower installation costs, and flexibility (no traditional wired physical restrictions).

 Wireless technology can be used by the military for sensors and sensor networks,

unmanned vehicles, aircraft, communications, etc. With usage, however, comes the

responsibility of securing the technology against compromise. Current security

4

techniques are concerned with meeting requirements for three security principles:

confidentiality, integrity, and authenticity, principles which can be fulfilled via

cryptography.

Without strong, reliable cryptographic algorithms, the data collected via different

technologies would not be trustworthy and the information collected would be too

precarious for military decision makers. In fact, because unencrypted wireless traffic is

susceptible to sniffing, the Department of Defense published Directive 8100.2 in April

2004 to address the emerging new technologies. The directive mandated encryption on

unclassified commercial wireless devices, active screening for wireless devices (unknown

attackers could set up wireless devices at perimeters), and incorporation of wireless

information into annual Information Assurance training (military personnel should not be

the weak link because of a lack of training) (Defense, 2004).

1.4 Overview of Research

 The objective of this research is to develop an adaptive cryptographic controller,

which allows users to reason about the level of security versus the system throughput.

Figure 1: Thesis Objective

The ability to communicate via wireless technology provides an avenue for

delivering information at anytime. Sensitive or classified information can be transferred

wirelessly across unsecured channels by using cryptographic algorithms. My research

5

6

focused on dynamically selecting optimal cryptographic algorithms and cryptographic

strengths based upon the hardware and bandwidth that were available for the transferring

of various sized files or packets. Simulations were used to test the controller that was

developed in my research.

The conclusion of the research provides a selection process for users to determine

the best cryptographic algorithms and strengths to send desired information without

waiting for information security personnel to determine the required method for

transferring. This capability will be an important stepping stone towards the military’s

vision of future Net-Centric Warfare capabilities.

II. Literature Review

2.1 Underlying Theme

Research in cryptography, to meet the growing demands of wireless technology,

continues to expand. Some of the research focuses closely on the research objective,

adapting cryptographic algorithms based upon the observed wireless network

environment, i.e. a dialable cryptography for wireless networks. The different nuances

for the term ‘dialable cryptography’ include dynamic cryptography or adaptive security.

The literature review of this research was used in the research methodology.

The basic premise of different on-going dynamic cryptography is that if

cryptographic algorithms are predetermined before programs are run or data transferred,

then the algorithms are based upon assumptions agreed upon prior to runtime (based on

earlier behavior) and does not take into consideration the actual runtime environment.

These algorithms are static, predictable, inefficient, and bind the user to security

decisions made at the beginning of the communication session or network connection

(Raissi, 2006). Monitoring is required to determine if the static algorithm is sufficient for

the task. The optimal approach is to dynamically select the cryptographic algorithm at

runtime, based upon the state of the actual system, to balance the tradeoffs between

security, speed, and priority for the files to be transferred.

7

2.2 DSOCARE

 A model to do this is the Dynamic Selection of Optimal Cryptographic

Algorithms in a Runtime Environment (DSOCARE). DSOCARE worked at the

middleware level to collect, select, and report on symmetric block ciphers.

 The DSOCARE’s collection function included running benchmark tests and

storing the data in database management systems located on the DSOCARE server.

(Raissi 2006) The model used a Runtime Optimal Cryptographic Algorithm Selector

(ROCAS) that was based on a hybrid genetic algorithm (part of evolutionary computing

where biological systems are observed). To select optimal algorithms, ROCAS received

diverse client security requests with high and low security, speed, and prioritized quality

of service parameters. The reporting function of DSOCARE was used to generate and

gather data.

DSOCARE’s basic approach is that one algorithm does not fit all situations. The

centralized approach (middleware) allowed for the collecting, analyzing, and

recommending optimal cryptographic algorithms. Since communication services vary in

security, speed, and priority, the chosen optimal cryptographic algorithm was based on

the output from the genetic algorithm (which included client input) and not a statically

predetermined one.

 The results from DSOCARE’s data indicate that security, speed, and priority are

improved with running DSOCARE as opposed to traditional cryptographic static services

or methods.

8

2.3 MANET Frameworks/Models

A divergence from the standard delivery of cryptographic methods is on-demand

key distribution for mobile ad-hoc networks (MANETs). This method uses message keys

that are passed through the network to avoid encrypting and decrypting messages at every

node. Instead the message key is the only item re-encrypted.

 MANETs are subject to intermittent connections caused by obstacles blocking

transmission or other interference. In MANETs, there may be a need to have secure

multicast communications where many nodes receive the encrypted message at once

instead of unicast where an encrypted message is designated for one node. Because of

the unreliability of MANETs and multicast messaging, on-demand key distribution

becomes a necessary method for communication. This distribution uses gossip-based

protocols which use epidemic communication patterns (these patterns are observed in

biological systems when diseases are spread). Like the spread of a disease, there are

healthy nodes (reliable) and unhealthy nodes (unreliable). The healthy nodes will receive

the message in a logarithmic number of rounds while the unreliable nodes will receive it

at an intermittent rate (Graham, Hopkinson et al. 2007).

Although this thesis did not focus on the actual distribution of the cryptographic

keys, the research by Graham provided a background investigation into the key

distribution challenges in wireless networks. In addition, it emphasized measuring end-

to-end delay from prior to encryption to after encryption. Another observation from the

paper is that symmetric key algorithms are usually faster than public key although “in

practice, … symmetric key encryption is preferred, but public key encryption is often

9

required in order to send a symmetric key for future use” (Graham, Hopkinson et al.

2007).

Another model for MANETS is the Adaptive Security Model (ASM) for denial of

service security threats in mobile agent systems (Alampalayam and Kumar 2003). It is

based on a fuzzy feedback controller. Fuzzy feedback controllers are used with fuzzy

logic which deals with approximate reasoning similar to how humans logically arrive at

answers given imprecise information. The user selects security levels and requirements

that he/she needs. Since MANETs are more susceptible to intrusion, eavesdropping, and

selfishness, the “goal is to provide a security framework that will detect automatically

various attacks and take appropriate measures to minimize the denial of service effects”

(Alampalayam and Kumar 2003). This flexible and adaptable framework created by the

model is scalable, and could detect, prevent, and control security attacks at node-level or

system-level (Alampalayam and Kumar 2003). The ASM integrates security

requirements by combining holistic (“holistic security is proactive, preventive, and

predictive” (Alampalayam and Kumar 2003)) and adaptive security techniques to allow

users who are not experts in security to easily decide security policies. The ASM uses a

feedback control scheme similar to how a human reacts to a virus (evolutionary

computing) and assigns security levels (Alampalayam and Kumar 2003).

The concepts of how the user selects security levels and requirements provide

background information for this research and were incorporated into the methodology.

10

2.4 WAHSN

Similar to Mobile Ad-Hoc Networks, Wireless Ad-hoc and Sensor Networks

(WAHSN) can utilize adaptive security. Critical resources (“battery life, memory,

computation, power, and bandwidth” (Chigan, Ye et al. 2004) for WAHSNs are used as

parameters for a resource-aware security framework. This self-adaptive framework takes

into consideration performance cost and network resource expenses. The basis of the

framework is a knowledge profile that includes system vulnerabilities, system security

requirements, system network performance requirements, and critical resources. The

security attributes are quantified into a security index (SI). Each specific WAHSN

application (for example integrity or confidentiality) is given a value on a scale with

associated resource costs. The SI quantifies how secure the system is. Another

quantification is the Performance Index (PI) which quantifies the network performance.

The Service Provision Index (SPI) combines security and performance. Ye Chigan’s

research was investigating two different optimization modules for security. Both of the

modules should determine the best cryptographic scheme to apply to the WAHSN system

under different communication protocols and resource constraints. Important points from

Chigan’s research which was applied to this research are that the mechanism (controller)

must take into consideration various limiting factors (i.e., it cannot just choose the highest

level of cryptographic algorithms) and that the controller seeks to maximize the overall

network security service and network performance service. In addition, it can switch

from one protocol (including the cryptographic algorithms) under attack to another

protocol (Chigan, Ye et al. 2004).

11

2.5 DRE

In addition to MANETs and WAHSNs, distributed real-time embedded (DRE)

applications use wireless technology. For DREs, the criticality to report in a timely

manner is countered by the threat of adversaries reading data, modifying it, or claiming

false identity (Kang and Son, 2006). The model, Systematic Security and Timeliness

Tradeoffs (SSTT), balances time and cryptographic security requirements in applications

such as battlefield monitoring and target tracking. The model introduces the variable,

Strength of Defense (SoD), based on the cryptographic key length. The cryptographic

key length is adapted to improve the performance of DREs. The model does not test for

dynamic key generation or distribution but assumes that the keys are distributed and

agreed upon prior to running the programs and only symmetric keys are used.

The model attempts to achieve three main goals: confidentiality, integrity, and

authenticity. Confidentiality is supported when a Real Time Embedded System (RTES)

encrypts the plaintext message and prevents replay attacks by using counters. The

integrity and authenticity of the message is achieved by creating a secure message

authentication code that is computed over the message using a secure one-way hash

function. There is an exhibited tradeoff between the cryptographic algorithms and speed.

For example, if an RTES inside of an unmanned aerial vehicle normally use AES-256, it

can decrease to AES-128 when it is overloaded and unable to perform well. The SSTT

algorithm is not tied to a specific cryptographic algorithm nor key length (Kang and Son,

2006).

12

2.6 Parallel Disk Systems Model

Mobile Ad-hoc Networks, Wireless Ad-hoc and Sensor Networks, and

Distributed Real-Time Embedded applications are not the only networks/applications that

benefit from adaptive security. Parallel disk systems can also benefit. Although they can

alleviate disk input/output bottleneck problems, these highly scalable systems normally

do not allow the optimal and dynamic changing of the networked environment.

A model currently under research for parallel disk systems is the Adaptive Quality

of Security Control Scheme (ASPAD). It allows network disk systems to adapt to

changing security requirements and workload conditions. ASPAD has three phases:

“dynamic data partitioning, response time estimation, and adaptive security quality

control” (Nijim, Qin et al. 2006). Through the successful completion of the phases,

ASPAD can achieve two major performance goals: high quality of security and

guaranteed response time.

The ASPAD research methodologies was used as background for the

methodology because the ASPAD determined the cryptographic scheme for the disk

requests while still trying to achieve two performance goals: high quality of security and

guaranteed response time.

2.7 AdaptCrypt

Another aspect of choosing cryptographic algorithms for adaptive security is

incorporating the security policies into the decision-making process. Security policies

take into consideration system assets (cryptographic algorithms) and security

responsibilities. One method concerns flexible encryption for files where the entire file

13

or text may have different types of encryption. “The AdaptCrypt model uses several

different encryption algorithms (block ciphers for example AES, BlowFish, and IDEA) to

encrypt a file” (Manzanares, Camara et al. 2005). The security levels can be modified by

changing the encryption algorithms or switching key lengths for chosen parts of the file.

For example, one pattern for a four-block file could be AES 256-Blowfish-AES-128-

TwoFish. If the encryption pattern changes, only the portion that is incorrect would need

to be modified. Using parallelized encryption, each of the encrypted blocks can be

individually accessed. ApaptCrypt is not automatic but relies upon the user to manually

encrypt and decrypt based upon the security policies. Further testing of AdaptCrypt

could lead to enhancements for automatically choosing the security levels (cryptographic

algorithms) based upon the outcomes of the security policies.

2.9 Context-Based Security

Another method for adaptive security via security policies is with context-based

security. Context-based security considers the context in which the system is used. It is a

relatively new approach to counter different types of security problems brought on by

“increased mobility of pervasive systems and heterogeneity of devices” (Brezillon, 2004).

In these systems, the context continually changed based upon dynamic environmental

variations and was used to determine the security context. The security context is a set of

collected information from the user and application environment that influences the

security infrastructure of the user and the application (Brezillon, 2004). This security

context describes situations in which security decisions were made. These decisions can

include adapting the cryptographic protocol used, requiring stronger authentication, or

14

15

automatically denying access when intrusion was detected. The model used contextual

graphs which were “chance nodes where contextual elements are analyzed to select the

corresponding path.” (Brezillon, 2004). The graphs take into account the actual working

environment.

2.10 SAM

 Although the research by Hinton on a Security Adaptive Manager, SAM, refers

mainly to operating systems under different conditions and not necessarily with

cryptography adaptations, there were interesting ideas that was utilized in this thesis.

 First “using adaptive security, a system can exist in a less secure, more

performant state until it comes under attack” (Hinton, Cowan et al., unpublished).

 Second, “adaptive security allows us to implement a system in a high

performance, highly functional state for normal use, and then adapt the system to a less

performant/less functional/more secure state in the presence of attacks” (Hinton, Cowan

et al., unpublished).

 Third, it discusses an adaptation space which defines when and how adaptation is

implemented. The adaptation space includes condition space and transition graph. The

condition space is a complete lattice of possible conditions of interest and their settings.

In the transition graph, there is one node for each system configuration. The graph

defines how to transition between different configurations (implementation alternatives).

III. Methodology

3.1 Methodology Overview

This thesis investigated the development of software controllers that would

choose an encryption scheme for a commodity or a list of commodities. These

commodities represented the information to be sent at a node in a wired or wireless

network. At the node, the commodities will be encrypted (simulated) and then

transmitted over the network, however with limited bandwidth and CPU, only a select list

of commodities can be transmitted. Since each commodity consisted of a file size and a

priority for the file size, the list of transmitted commodities were the ones that maximized

the sum of the priorities (i.e. the goodness) and still maintained the priority for the

commodity (e.g. a priority of 80 would be transmitted before a priority of 20 if possible).

In making the decision for an encryption scheme, the controller had to factor in

the available bandwidth and CPU for the entire list of commodities sent to it. In addition,

the performance characteristics (i.e. the security level) of different encryption schemes

determined the transmitted commodity list.

 The end results of the thesis were four different controllers developed which

allowed two different methods for choosing the encryption scheme (via binary integer

programming and without binary integer programming). Figure 2 shows a graphical

representation of the research objective.

16

Sender

MB

List of
Commodities

RSA

ELG-E

AES

TwoFish

BlowFish

CAST5

3DES

Available
Bandwidth

Security and
Performance

Level

Controller
Decision MB

Encrypted Data

Encryption
Algorithm
Chosen

Available
CPU

Figure 2. Detailed Thesis Objective

The controllers could choose between seven encryption algorithms (3DES, AES,

BlowFish, CAST5, ElGamal, RSA, and TwoFish) and various key sizes.

To meet the research goal of creating controllers for selecting encryption

schemes, the research was divided into four steps. Step 1 developed a front end

(gpgTester) to the cryptographic tool, gpg, GNU Privacy Guard. The front end,

gpgTester, was used to time how long various cryptographic algorithms took to encrypt

and decrypt various sized files. Step 2 inserted the data from Step 1 into MatLab to

interpolate the given inputted data based upon encryption schemes. Step 3 created the

17

controller by optimizing the interpolated data from Step 2 utilizing MatLab. Step 4 used

NS-2 to run simulations for the controller. The flowchart in Figure 3 depicts the four

major steps in the research.

Figure 3: Overall Methodology Flowchart

The primary tools used in this research were C++, gpgTester (code written for this

research), gpg (a tool for using different cryptographic algorithms), MatLab (used to

interpolate the data, optimize the computations from gpgTester data, and create the

controller), and NS-2 (used to run simulations). The simulations and controllers were

based upon the results gathered from the gpgTester program.

18

3.2 gpgTester (Step One)

3.2.1 gpgTester Explanation.

The first step of the research was to actually collect statistical data from different

encryption algorithms and key sizes. This data, the foundation for the other research

steps, included the encryption time, encrypted file size, and the decrypted time for

different files.

To collect the data, the open source cryptographic tool, gpg (GNU Privacy

Guard), was used. This tool encrypted and decrypted files using various encryption

algorithms, key sizes, and compression utilities. To access the gpg and collect the

statistical data, the gpgTester program, written in C++, served as a front-end to gpg. The

gpgTester executed different cryptographic algorithms with various sized files. The

gpgTester was run in a cygwin environment on a Dell Latitude D820 Microsoft Windows

XP Professional with Service Pack 2. The laptop had an Intel Core 2 CPU at 2.0 GHz

with 3.25 GB of RAM. Cygwin, a Linux emulator for Windows, included an executable

version of gpg (Gnu Privacy Guard version 1.4.5) already installed. GpgTester used

system calls to gpg to select different cryptographic algorithms. See Appendix 1 for an

explanation of the gpgTester code and a brief explanation of gpg. GpgTester was able to

test symmetric and public key algorithms for encrypting and decrypting files. It also

tested compressed versus non-compressed files of various sizes.

3.2.2 gpgTester Scenarios.

To generate data for the MatLab optimizations, gpgTester fed different

combinations of file sizes and cryptographic algorithms into gpg. The different

19

algorithms were Elg-E, RSA, AES, AES192, AES256, TwoFish, BlowFish, 3DES, and

CAST5. Elg-E (ElGamal) and RSA are public key algorithms while the other ones are

symmetric key algorithms. Data generated from the scenarios included the encryption

time, decryption time, and output file size for a given input file size for the various

encryption algorithms. Compression times for the algorithms were also captured for

some input file sizes.

 For Elg-E and RSA the key strengths were between the sizes of 1024 and 4096 in

increasing increments of 256. In addition, ELG-E included key strength 768, however,

RSA could not go below 1024 in gpg.

 A limiting factor for symmetric key strengths was the gpg itself. Gpg allows for

key strengths of 128, 192, and 256 for AES, but not for TwoFish, BlowFish, and CAST5

which are all defaulted to 128.

 The file sizes chosen for encryption were 1, and 5 to 100 in increasing increments

of 5, and 200 to 1000MB in increasing increments of 100. Because of the extensive

amount of time in testing these various sized files, the file sizes for decryption were from

1 to 100MB for key sizes 2048 and under, and 1MB for key sizes above 2048. Primarily,

the research focused on the time required to encrypt files and the encrypted output file

size. In addition, if compression was used then all three of the compression algorithms

were compared, i.e. bzip2, zip, and zlib. Each scenario was run 30 times using gpgTester

to allow the averaged data to be used in the other steps.

 Two types of files were used, randomly-generated and non-randomly generated.

The randomly generated files were created with 256 bytes of data increments. The

20

majority of testing was based upon files generated randomly except for the testing

comparisons for the compression files. Therefore to test the different compression

algorithms with each other and uncompressed files, non-random sized files were created.

The non-random files had various text in it including the American Constitution, the

Declaration of Independence, passages from various religious texts (Christian and

Buddhist), full text of Requests for Comments, and other text found on the internet. The

same file (either 1, 10, 20, or 30 MB) was used to test the uncompressed file with the

bzip2, zip, and zlib compression utilities. In addition, to show the offset for the

compression of random files, the bzip2, zip, and zlib were compared with various sized

random files.

 The following table shows a depiction of the testing scenarios for one algorithm,

CAST5:

21

Table 1: gpgTester Scenario
Algorithm Key size Random File size Non-Random Compression Encrypted Decrypted

CAST5 128 1 1 Bzip2, zlib, zip Yes Yes

 5 Yes Yes

 10 10 Bzip2, zlib, zip Yes Yes

 15 Yes Yes

 20 20 Bzip2, zlib, zip Yes Yes

 25 Yes Yes

 30 30 Bzip2, zlib, zip Yes Yes

 35 Yes Yes

 40 Bzip2, zlib, zip Yes Yes

 45 Yes Yes

 50 Bzip2, zlib, zip Yes Yes

 55 Yes Yes

 60 Bzip2, zlib, zip Yes Yes

 65 Yes Yes

 70 Bzip2, zlib, zip Yes Yes

 75 Yes Yes

 80 Bzip2, zlib, zip Yes Yes

 85 Yes Yes

 90 Bzip2, zlib, zip Yes Yes

 95 Yes Yes

 100 Bzip2, zlib, zip Yes Yes

 200 Yes No

 300 Yes No

 400 Yes No

 500 Yes No

 600 Yes No

 700 Yes No

 800 Yes No

 900 Yes No

 1000 Yes No

22

The following data was tested via gpgTester:

• CAST5 with Key size 128. File sizes from 1, and 5 to 100 in increments

of 5MB, and 200 to 1000MB in increments of 100. Decryption for file

sizes 100MB and under. Compression for files 1, 10, 20, and 30 MB.

• BlowFish with Key size 128. File sizes from 1, and 5 to 100 in increments

of 5MB, and 200 to 1000MB in increments of 100. Decryption for file

sizes 100MB and under. Compression for files 1, 10, 20, and 30 MB..

• TwoFish with Key size 128. File sizes from 1, and 5 to 100 in increments

of 5MB, and 200 to 1000MB in increments of 100. Decryption for file

sizes 100MB and under. Compression for files 1, 10, 20, and 30 MB.

• 3DES with Key size 128. File sizes from 1, and 5 to 100 in increments of

5MB, and 200 to 1000MB in increments of 100. Decryption for file sizes

100MB and under. Compression for files 1, 10, 20, and 30 MB.

• AES with Key size 128, 192, and 256. File sizes from 1, and 5 to 100 in

increments of 5MB, and 200 to 1000MB in increments of 100.

Decryption for file sizes 100MB and under. Compression for key size 128

for files 1, 10, 20, and 30 MB.

• RSA with Key length 1024, 1280, 1536, 1792, 2048, 2304, 2560, 2816,

3072, 3328, 3584, 3840, and 4096. File sizes from 1, and 5 to 100 in

increments of 5MB, and 200 to 1000MB in increments of 100.

Decryption only for file sizes 100MB and under with key lengths 2048

23

and below and for 1MB files for the other key lengths. Compression for

key length 1048 for files 1, 10, 20, and 30 MB.

• ElGamal (Elg-E) with Key length 768, 1024, 1280, 1536, 1792, 2048,

2304, 2560, 2816, 3072, 3328, 3584, 3840, and 4096. File sizes from 1,

and 5 to 100 in increments of 5MB, and 200 to 1000MB in increments of

100. Decryption only for file sizes 100MB and under with key lengths

2048 and below and for 1MB files for the other key lengths. Compression

for key length 1048 for files 1, 10, 20, and 30 MB.

With gpgTester, the public key algorithm is chosen with another algorithm when

a system call to gpg occurs. The choices are RSA with RSA, RSA with Elg-E, DSA with

RSA, or DSA with Elg-E. Regardless of which algorithm is chosen first, it is the second

algorithm that is actually used for encryption. The first algorithm is strictly for signing

and is not factored into the test results nor used in any timings. Therefore, only RSA

with RSA and RSA with ELG-E were used and not DSA as the signing algorithm. For

symmetric key, 3DES, AES, TwoFish, BlowFish, and CAST5 were used. The default

key size for 3DES, TwoFish, BlowFish, and CAST5 was 128 bit (as listed in the

Assumptions/Limitations section of this document).

GpgTester created random files of the requested file size. This random file was

then encrypted and, if required, decrypted and/or compressed. All data was sent to a

Microsoft Excel file for preliminary analysis and as input into MatLab optimizations.

A graphical representation is shown in Figure 4.

24

gpggpgTester gpgTester

Microsoft Excel
SpreadsheetsResults.xls

Encryption
Algorithm

KeyStrength

Compression

File Size

Encryption Time

Decryption Time

Encrypted
Output File Size

MatLab

Figure 4: Initial Data Generation

3.2.3 gpgTester Verification.

Prior to using the results from the gpgTester, the program was verified to

determine that the correct data would be generated.

 The gpgTester created different file sizes based upon the input of the user. For a

detailed explanation of the verification of the gpgTester see Appendix 1.

3.3 MatLab Interpolation (Step Two)

3.3.1 Overview of Interpolation.

 The statistical data (encryption time and encrypted file size) collected from Step

One was the foundation for the other steps primarily Step Two. The overall objective of

25

this step was to calculate the simulated encryption time and simulated encrypted file size

for different commodities’ file sizes. This step used interpolation to determine new data

points (encryption time and encrypted file size) for different input file sizes within the

range of the collected data (test results from the gpgTester, Step One). The interpolated

data points for the commodities were sent to the various controllers (Step Three) for

optimizing. (The rest of the research (Step Two and above) focused only on encryption

times and encrypted output file size, however the data could be expanded to include

decryption.) A summary graph of this step is provided in Figure 5.

Results.xls
from

gpgTester

Interpolator
(runCryptGrav)

Data for
MatLab

Controller
One

Interpolator
(runCryptGrav2)

Data for
MatLab

Controller
Two

Interpolator
(runCryptGrav3)

Data for MatLab
Controller Three

and Four

Figure 5. Data Interpolation Overview

26

3.3.2 Transfer Data to MatLab File.

After collecting the data from Step One, gpgTester, MatLab was used to

interpolate the data. In order to actually use the data for MatLab, the data from Step One

was compiled into one spreadsheet, results.xls, which included all of the averaged data

(encryption times and encrypted file sizes) from the 256 files from gpgTester executions.

This spreadsheet was then read by six MatLab files (inputCreate3DES, inputCreateAES,

inputCreateBlowFish, inputCreateTwoFish, inputCreateCAST5, inputCreateElg,

inputCreateRSA) to extract data into one file. This file was used to create one matrix in a

format easily translated by other MatLab files. (An interesting characteristic of MatLab

is that all data is considered matrices, therefore all of the data to and from MatLab was

written in matrix (or vector) form.)

3.3.3 Data Interpolation.

To exploit the merged matrix data, an interpolation was required to determine the

output for any given file size based upon the encryption algorithm, the compression

function, the key size, and randomness of the file. This allows for the curve fitting of

new data points within the range of the tested data from Step One. This interpolation was

done within the runCryptGrav files which were the fundamental MatLab files for this part

of the research. The interpolation chosen was the cubic spline interpolation using

polynomials because “a practical feature of cubic splines is that they minimize the

oscillations in the fit between the interpolating points” (Guenther 2002). “Polynomials

are the approximating functions of choice when a smooth function is to be approximated

locally” (MatLab Website). Normally, interpolation with high-order polynomials (to

27

create smooth lines/curves between two data points) yield erratic results, however, by

using cubic splines, this erratic behavior was eliminated (Hanselman and Littlefield,

2005). Cubic spline data interpolation involved the approximation of piecewise third-

order polynomials which passed through a set of existing data points. The interpolation

of data points which divided the “interval into a set of subintervals and constructed a

lower-degree approximating polynomial on each subinterval” (Guenther, 2002).

Basically cubic splines look for cubic polynomials that approximate the curve between

each pair of data points. For example, given tested input sizes of approximately 1, 5, 10,

15, 20, etc. for a random file with encryption scheme of AES 128-bit with no

compression, the cubic spline from MatLab would output the encryption time and output

encrypted file size for other non-tested input sizes (for example 13 or 67 MB) for that

particular encryption scheme.

The mathematical calculations used by the MatLab spline involve a “unique

piecewise cubic polynomial with two continuous derivatives with breaks at all interior

data sites except for the leftmost and the rightmost one (the endpoints)” (MatLab) for

each data point requested. The cubic spline function searched for continuity between the

data points by solving for the following:

() []1 ,nS t C a b−∈

where n = 3, a and b are endpoints (Spline Website).

Since the cubic spline data interpolation sought to find a data point based upon the

data results from Step One, cubic splining had two constraints placed on it to prevent

errors from cubic splining data points outside of the tested data ranges. The first

28

constraint is that if compression (bzip2, zlib, or zip) was required, then only execute

cubic spline for key sizes of 1024 or 128. The next constraint was that if the request was

a non-random file then cubic spline was only executed for files under 32MB with key

sizes of 1024 or 128.

3.3.4 Output File Size and Encryption Time Determination.

There were three different functions (MatLab files) for determining the encrypted

output file size and the encryption time, runCryptGrav, runCryptGrav2, and

runCryptGrav3. All of these files include data interpolation and the encrypted output file

size and encryption time based upon parameters passed into the function. The

runCryptGrav functions were used by the MatLab controller for optimizing the data as

seen in Figure 5 from Section 3.3.1.

3.3.4.1 runCryptGrav.

The runCryptGrav function determined which commodities (each commodity

included a file size and a priority for the file size) could be sent based upon the available

CPU and available bandwidth for the security algorithm requested. The input arguments

for runCryptGrav were the combined matrix from the gpgTester runs, the available CPU

in seconds, available bandwidth in bytes, the required security algorithm (included the

key size, compression required, and randomness of file), and the matrix of commodities

that were requested (which included the priority and the input file size for each

commodity). The function prioritized the goodness or value (ranged from 0 to 100) of

the commodity, the higher the goodness then the higher the priority of what should be

sent. After interpolating the encrypted file size and encryption time via cubic splining, it

29

aggregated the commodities (based upon the priorities) that could be sent within the

available CPU and available bandwidth. This function’s output was a matrix of the

maximum commodities ready for transmission in which the aggregated encrypted file

size and encryption time did not exceed the available CPU and bandwidth for the

specified encryption scheme.

3.3.4.2 runCryptGrav2.

 Unlike runCryptGrav, the function runCryptGrav2 only had two input parameters:

the matrix of collected data from gpgTester and the matrix of communication

commodities which include the commodity goodness values (priorities) and file sizes.

Through data interpolation using cubic splines, runCryptGrav2 outputted the encrypted

file size and encryption time for all commodities sent to it. It did not determine if the

aggregated commodities exceeded the available bandwidth and CPU as the function

runCryptGrav did.

3.3.4.3 runCryptGrav3.

 This function was used by inputCrypt3 to prepare output data for network

simulations. Similar to the other runCryptGrav functions, it used cubic spline to

interpolate the data sent to it. It’s input and output parameters were similar to

runCryptGrav2.

3.4 MatLabController (Step Three)

3.4.1 Overview of MatLab Controller.

The interpolated data found in Step Two was used as input to create the different

MatLab controllers. The controllers received the list of commodities (file sizes and

30

priorities) and sent these commodities to the interpolator (Step Two) to determine the

actual encryption times and encrypted file sizes for the commodities. In addition to the

interpolated data and the list of commodities, the controllers also used encryption scheme

information to determine via optimization which commodities could actually be

transmitted based upon the available bandwidth and CPU. There were four different

types of controllers, inputCrypt (Controller One), inputCrypt2 (Controller Two), and

inputCrypt3 (Controller Three), and Controller Four. Different MatLab functions were

created to assist the controller in its optimization. The main functions were for creating

the commodities, determining security and performance levels, and executing a binary

integer solver for optimizing. Some functions were used by more than one controller to

meet the objectives of the function. Figure 6 shows a graphical representation of the

major functions (MatLab files) used by the various controllers.

31

Controller One

inputCommodities
(random number

generation)

Binary
Integer
Solver

indeSecurity
(Security Level

and
Performance

Level)

Controller Two Controller
Three

Controller
Four

runCryptGrav runCryptGrav2 runCryptGrav3

Figure 6. MatLab Controller Overview

3.4.2 Random Distribution of Commodities.

To generate commodities (each commodity had two elements in it, file size and

priority) with various file sizes and priorities, an inputCommodities function was used by

Controller One and Controller Two. The number of commodities requested by Controller

32

One and Two was sent into this function to create the matrix of commodities. A sample

commodity matrix is shown below:

Table 2. Sample Commodity Matrix
File Size in Bytes Priority

1,315,040 99

5,506,693 69

63,238,192 71

95,328,065 3

The data output from gpgTester included file sizes from 1MB to 1000MB,

however, for the controllers only file sizes from 1MB to 100MB were used. This

reflected more realistically with actual files used for transmissions. Rarely would file

sizes of 1000MB be encrypted and sent. In addition, most files would be closer to the 1-

20MB size as opposed to the 80 – 100Mb size. To randomly generate file sizes that meet

the above characteristics, a gamma random number distribution was used, which generate

non-negative random numbered file sizes. Randomly generated numbers via a gamma

distribution “provide a fairly flexible class for modeling nonnegative random variables”

(Rice, 1995) and allow for a distribution that was similar to a reverse exponential

histogram.

Gamma distribution was theoretically based on the gamma function, a

mathematical function defined in terms of an integral (Milton and Arnold, 2003). The

general gamma distribution that MatLab used for the function, gamrnd, was

33

() ()
1 tg t t e

α
α λλ

α
− −=

Γ
, t ≥ 0

The above gamma distribution uses the gamma function, Γ , whose formula was

() 1

0

x ux u e du
∞

− −Γ = ∫ , x > 0

To generate random numbers with a heavier distribution between 1 and 100 MB,

the shape and the scale of the gamma distribution were modified. The shape, α , changed

the shape of the density function while the scale, λ , changed the units of measurement.

For the gamrnd MatLab function, shape was .75 and the scale was 65. If the numbers

were not between 1 and 100MB, then it was not added to the list of commodities.

The value or priority for the commodity was a uniformly distributed random

number (i.e. all values had an equal probability of occurring) ranging from 1 to 100. The

density function for this uniform distribution was

() 1f x
n

=

where n was a positive integer.

Each number generated was rounded up to the next integer to yield random

numbers between 1 and 100.

The output commodity matrix (file size and associated priority) was returned to

the calling function, either inputCrypt or inputCrypt2.

34

3.4.3 inputCrypt Controller (Controller One)

 This function, inputCrypt, was the simplest of the controllers. It read in an input

file and based upon the data in this file, outputted the randomly generated commodities

that would fulfill the restrictions.

 A sample input file is shown in Table :

Table 3. Sample Input File for Controller One
Available

Bandwidth

in MB

Available

CPU in

Seconds

Number of

Commodities

Security

Level

Performance

Level

120 3000 20 4 3

100 2400 30 5 2

90 2000 40 1 1

200 1900 57 2 1

50 4000 60 3 2

300 6000 70 4 2

70 3400 83 5 3

75 2000 90 3 3

30 1900 100 2 2

20 3000 26 1 2

 For each line in the file, Controller One via the inputCommodities

function created the required number of commodities. Each commodity included the file

35

size and the priority for the commodity. The file sizes were randomly generated via a

gamma distribution while the priorities were randomly generated via a uniform random

distribution. Next, Controller One used the security level and performance level required

(read from the input file) to determine which encryption algorithm(s) to use by calling the

indeSecurity function.

The indeSecurity function took in the desired security level and performance level

and outputted the encryption algorithm to use and the key size. The security level ranged

from high security (5) to low security (1) whereas the performance level ranged from

high (3) to low (1). Security level was 5 for High Security, 4 for Medium High, 3 for

Medium, 2 for Medium Low, and 1 for Low. The performance level was 3 for fast

performance, 2 for medium performance, and 1 for slow performance. Figure 7 shows

the conceptual idea of security and performance dials for a dialable cryptographic

controller.

Figure 7. Dial Settings for Controller One

36

Once the encryption algorithm and key sizes were determined from the function

indeSecurity, Controller One calls the runCryptGrav from Step Two with the input

parameters. The input parameters were the commodities (input file size and priority),

encryption algorithm, key size, available bandwidth, and available CPU. The

runCryptGrav calculated the encryption times and output encrypted file sizes for the

commodities that could be sent.

The output matrix from the runCryptGrav served as a decision tool for the

Controller One (inputCrypt). Normally there was more than one output matrix because

the security and performance settings had more than one encryption scheme associated

with it. The inputCrypt controlled which scheme was the best one to use. It first

maximized the number of commodities to be sent, then chose the smallest combined

encryption time for the commodities, and finally the greatest output file size. For

example if there were three different encryption algorithms available, but one encryption

line could send nine commodities but another could only send 5, then the controller

would chose the encryption algorithm that yielded nine commodities. However, if two

different encryption algorithms yield the same number of commodities, then the

controller would chose the one with the smallest combined encryption time.

Finally, inputCrypt wrote the output commodities to a file for the user. The

output file repeated the available bandwidth, available CPU, number of commodities,

security level, and performance level used. In addition, it wrote out the requested

commodities (input file size and priority), the list of commodities that could be sent

(input file size, priority, output encrypted file size, and encrypted time), encryption

37

algorithm and key size used, the total goodness (sum of the chosen commodities’

priorities) of the commodities, the total bandwidth required, and the total encryption time

needed.

3.4.4 inputCrypt2 Controller (Controller Two)

 Controller Two introduced binary integer programming to determine the best

encryption algorithms to use. “Binary integer programming problems involve

minimizing a linear objective function subject to linear equality and inequality

constraints. Each variable in the optimal solution must be either a 0 or a 1. The MatLab

Optimization Toolbox solved these problems using a branch-and-bound algorithm that

searches for a feasible binary integer solution, updates the best binary point found so far

as the search tree grows, and verifies that no better solution is possible by solving a series

of linear programming relaxation problems” (MatLab Website). The controller did not

use the concept of security and performance levels but rather presented seven encryption

algorithms per commodity for the binary integer solver to optimize.

 In this section, the idea of binary choice (either 0 or 1) referred to whether or not

the commodity could be sent (0 if not sent and 1 if sent). The decision was represented

by a binary variable x. The object was to maximize 'f x such that Ax b≤ .

 Each commodity was assigned to an x such that {1

0
jx = . The priorities (also

known as values) of the commodities were used as weights for the binary integer

programming as the objective coefficients function, f. The total net value of the decisions

were represented by 'f x or . Ζ

38

 Because MatLab works with only matrix manipulations, all data was changed into

the appropriate matrix form.

 Different commodities were tested using seven encryption algorithms with key

size of 1024 for public key and 128 for symmetric key (e.g. if there were 30

commodities, then the solution would try to maximize with 210 (30 x 7) commodities).

 The general commodity matrix for n commodities would be:

1 1 11 11 12 12 17 17

1 1 2 2 7 7n n n n n n n n

i p s t s t s t
c

i p s t s t s t

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

The first column, (i), was the input file size, the second column, (p), was the priority of

the commodity, the rest of the columns represented the output encrypted file size (s) and

encryption time (t) for each of the seven algorithms tested.

 The general matrix equation for f (the vector containing the objective function

coefficients) was

1

*7n

p
f

p

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

where the vector, f, corresponded to the priorities in the commodity, c, matrix . Notice

that f had seven times more variables than the number of commodities to account for the

seven different encryption algorithms per commodity.

 The general b vector (right hand side values of Ax b≤) was

39

1

*7

1

1n

b

BW
CPU

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

where BW represents available bandwidth in bytes and CPU represents available CPU in

seconds. The 1’s represent the at-most value for each commodity (only at most one of

the seven encryption algorithms can be chosen for each commodity).

 The general A matrix, constraint coefficient matrix, was:

*7

*7

*7

*7

1 *7

1 *7

1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

n

n

n

n n n n n n n n n n

n

n

A

size size
time time

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

The function chose at most one encryption algorithm out of seven available for each

commodity, therefore each commodity row had seven consecutive ones in it. The last

two rows were the encrypted file size and encryption time for each commodity’s

encryption algorithm.

 The general solution for n commodities was 1 1 2 2 *7 *7n nf x f x f xΖ = − − − −

which sought to maximize the function, Ax b≤ , to find the x variables.

 The general x vector solution was:

40

1

2

3

4

*7n

x
x
x

x
x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

where each xn was either a 0 or 1 with the imposed constraint that each commodity row

from A had at most one x=1.

 The above explanations were for commodities with seven available algorithms to

choose from. For example (to show how Controller Two worked), given four

commodities (each commodity includes file size and priority for commodity) with two

encryption schemes available for each commodity, an available bandwidth of 119, and an

available encryption time of 79, (not actual data numbers used for this example), the

commodities would be sent to the interpolator to determine encrypted file size and

encryption time for the two encryption schemes for each commodity. The interpolated

data would be included in the commodities matrix, c. In addition to this matrix, the other

matrices would be created prior to calling the binary integer programming function:

10 22 15 31 17 38
20 32 25 41 27 48
30 42 35 51 37 58
40 52 45 61 47 68

c

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

22
22
32
32
42
42
52
52

f

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1
1
1
1
1
1
1
1

119
79

b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

0
1
1
0
0
0
1
0

x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

41

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

15 17 25 27 35 37 45 47
31 38 41 48 51 58 61 68

A

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 A constraint placed on the binary function was that only one of the encryption

algorithms could be used per commodity, i.e. mutually exclusive with at most one

encryption algorithm chosen. Another constraint was that the sum of all the

commodities’ output encrypted file sizes had to be less than the available bandwidth.

Furthermore, the sum of all of the commodities’ encrypted times had to be less than the

available CPU. These three constraints were reflected in the above sample matrices.

 When the function was called, it attempted to maximize the number of x’s (1s) for

the four commodities. A detailed explanation of the binary integer programming follows

based upon the above matrices.

10 22 15 31 17 38
20 32 25 41 27 48
30 42 35 51 37 58
40 52 45 61 47 68

c

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

The above matrix is the commodity matrix with the first column representing the input

file size, 2nd column represents the value placed on each commodity, the 3rd column is the

output encrypted file size for encryption algorithm A, the 4th column is the encryption

time for algorithm B, the 5th column is the output encrypted file size for algorithm B, and

the last column is the encryption time for algorithm B.

42

22
22
32
32
42
42
52
52

f

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

The above vector is the vector containing the objective function’s coefficients. It is

weighted with the values from c, the commodity matrix. Because each commodity has

two available encryption algorithms, there are eight variables instead of four variables

(similar to having eight separate commodities: four commodities with two different

encryptions). Each value is used twice to represent the duplicated commodities.

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

15 17 25 27 35 37 45 47
31 38 41 48 51 58 61 68

A

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

The above matrix, A, is the primary matrix. It contains the constraints’ coefficients. It

sets the stage for mutual exclusions for the commodities. Each commodity is a row in the

first four rows of the matrix. The function will determine which encryption algorithm to

choose for the commodity. It will choose at most one encryption algorithm per

commodity (for mutual exclusion there are two 1’s per commodity row to reflect the two

available encryption algorithms). The last two rows represent the commodity’s file size

and encryption time respectively.

43

1
1
1
1
1
1
1
1

119
79

b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

This vector sets the limits for the function, Ax b≤ . This vector, b, holds the right-hand

side values for each constraint in the constraint matrix, A. The first eight rows (ones)

represent the eight different commodities. The second to last row is the available

bandwidth and the last row is the available CPU.

 When the binary integer programming function is called it seeks to maximize the

following equation for eight commodities and two encryption algorithms:

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8f x f x f x f x f x f x f x f xΖ = − − − − − − − −

1 2 3 4 522 22 32 32 42 42

 or more specifically for this

example: 6 752 52 8x x x x xΖ = − − − − − − x x− − x via a branch and

bound method. The output binary solution, x, is:

0
1
1
0
0
0
1
0

x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

44

Each line in the vector, x, represents whether or not the commodity can be sent (1 for

sending and 0 for not sending). Notice that for each commodity (originally four but

working set is eight) only one encryption algorithm is chosen per commodity.

Commodity 1 is the first and second rows of x, commodity 2 is the 3rd and 4th rows,

commodity 3 is the 5th and 6th rows, and commodity 4 is the 7th and 8th rows. A line by

line analysis of x shows that only commodity 1, 2, and 4 can be sent using encryption

algorithm A for commodities 1 and 4 and encryption algorithm B for commodity 2.

Unfortunately, the binary integer function included with the MatLab Optimization

Toolbox, bintprog, produced erratic results for large commodities. Therefore, an add-on

to the MatLab software was used to perform binary integer programming. This add-on

was glpk with the glpk mex interface for MatLab. The same principles for bintprog

applied to glpk, however, glpk was stable for large commodities (Yalmip Website).

 Similar to Controller One, this Controller Two also generated random

commodities for the input file size and priority. See Section 3.3.3 for an explanation of

this random generation.

 Controller Two called the runCryptGrav2 with just two parameters, the

commodities and a matrix of the compiled data from gpgTester. Prior to sending the

parameters to runCryptGrav2, seven security lines were added to each line of the

commodity. This security line included the encryption algorithm, key size, and non-

compression requirement. The security lines were the following:

45

46

• 3DES 128 bit

• AES 128 bit

• BlowFish 128 bit

• CAST5 128 bit

• TwoFish 128 bit

• ElGamal 1024 bit

• RSA 1024 bit

It was not necessary to provide the available bandwidth nor available CPU to

runCryptGrav2 because the binary integer function coded into Controller Two searched

for the optimal solution using the available CPU and available bandwidth as part of the b

vector.

 The output from runCryptGrav2 was a matrix of the commodities sent to it, output

encrypted file size, and encryption time.

 From this matrix, the glpk (binary integer solver), optimized the data. The solver

was restricted to only using one encryption line per commodity. Also, the solver

searched for solutions that would not exceed the available bandwidth and available CPU.

 The Controller Two read data from a file for the input. The data included the

available bandwidth, available CPU, and the number of commodities. A sample input

file is shown in Table 4.

Table 4. Sample Input File for Controller Two
Available

Bandwidth

in MB

Available

CPU

In Seconds

Number

of

Commodities

120 3000 4

100 2400 8

90 2000 12

200 1900 5

50 4000 20

300 6000 10

70 3400 3

75 2000 25

30 1900 9

20 3000 6

120 3000 20

100 2400 30

90 2000 40

The output from Controller Two was sent to an output file. The output was

similar to Controller One’s output. The output included the requested commodities

(input file size and priority), the list of commodities that could be sent (input file size,

47

priority, output encrypted file size, and encryption time), encryption algorithm and key

size used, the total goodness (sum of the chosen commodities’ priorities) of the

commodities, the total bandwidth required, and the total encryption time required to send

the commodities.

3.4.5 inputCrypt3 Controller (Controller Three).

 Controller Three was used as a basis for NS-2 simulations. The input files to the

controller and the output files from this controller were in the same format as required for

NS-2. It merged the binary integer programming from Controller Two with the security

and performance levels of Controller One.

 Unlike the other two controllers, it read in a file to determine the commodities

(instead of randomly generating the commodities) that should be sent based upon the

parameters in the file. The input parameters in the file included the available bandwidth

and available CPU. In addition, each commodity included the commodity number, input

file size, the priority of the commodity, the security level, and performance level. A

sample input file is shown in Table 5. The first row of the table shows the available

bandwidth and the available CPU. The next three columns (0) of the first row are

placeholders to ensure matrices are formed correctly for MatLab. The next rows show

the parameters for each commodity: commodity number, input file size, the priority of

the commodity, the security level, and performance level.

48

Table 5. Sample Input File for Controller Three
100 2400 0 0 0

1 10 60 3 1

2 15 28 2 2

3 30 90 3 3

4 5 30 2 1

5 50 15 4 2

6 60 75 1 1

7 3 90 5 3

8 22 49 2 2

9 20 74 2 3

10 44 38 5 2

 Each security level and performance level associated with three possible

encryption schemes, therefore each commodity was tripled to account for three

encryption schemes. For example, the last row of Table 5 is for commodity 10 with file

size 10 and priority 38. The security level, 5, and the performance level, 2, converted to

ElGamal with key size 3584, RSA with key size 3840, and RSA with key size 3584.

 The commodities were sent to the runCryptGrav3 with the encryption schemes.

The output from runCryptGrav3 (the encrypted file size and encryption time for each

49

commodity based upon the encryption scheme) was used as the input for the binary

integer function.

 Instead of seven different encryption schemes as in Controller Two, there were

only three encryption schemes. However, for Controller Three, the range of encryption

algorithms with key size (768 – 4096 for public key and 128 – 256 for symmetric key)

was greater than with Controller Two. (Controller Two only used key sizes of 128 or

1024 for the seven encryption algorithms.)

 As part of the binary integer programming (see Section 3.4.4 for a detailed

explanation of how the research utilized binary integer programming) the commodity

matrix, c, for n commodities was (all commodities were tripled to account for three

encryption algorithms per commodity):

1 1 11 11 12 12 13 13

1 1 2 2 3 3n n n n n n n n

i p s t s t s t
c

i p s t s t s t

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 The general coefficient matrix, f, for n commodities was

1

*3n

p
f

p

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 The coefficient matrix was used to solve 1 1 2 2 *3 *3n nf x f x f xΖ = − − − −

equation to maximize the x’s. The solver was confined by the constraint’s equation,

Ax b≤ , where A, x, and b respectively were:

50

*3

*3

*3

*3

1 *3

1 *3

1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 1

n

n

n

n n n n n n n n n n

n

n

A

size size
time time

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1

2

3

4

*3n

x
x
x

x
x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1

*3

1

1n

b

BW
CPU

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

The vector, b, includes the available bandwidth and CPU from the inputted file. The

vector, x, corresponds to the commodities that can be sent. If x=1, then the commodity

can be sent, however, if x=0, then the commodity will not be sent. In addition, the

matrix, A, enforced mutual exclusion (at most one) for the three different encryption

schemes.

51

The output from this controller was sent to a file in the same format as would be

sent to the NS-2 for simulations. The output was a matrix of the commodities (including

original commodity numbers) that could be sent based upon the available bandwidth and

CPU.

3.5 NS-2 Simulations (Step Four)

 The final step after creating the controllers were to simulate commodities received

from a network node. The network simulator, NS-2, simulated a small wired network of

up to 10 nodes. Although the thesis is focused on wireless networks, the data gathered

from the network simulator applied to a wireless network. Because NS-2 runs in a non-

Windows environment while MatLab runs in a Windows environment, an executable

MatLab file was required to transfer information between NS-2 and MatLab. For Step

Four, the executions were completed in a Linux environment.

The controller created for Step Four was the exact same controller as Controller

Three with some minor modifications. This new controller was called encryptFitter. One

minor modification was an adjustment from file size to packet size. Other modifications

were to align the controller’s code with the format required by NS-2.

The NS-2 simulations were one extension of a research topic by John Pecarina

(Pecarina, 2008). Pecarina’s research focused on creating an agent based framework to

maximize information available at network nodes. The research included a Hybrid Agent

for Network Control (HANC) network simulator which controlled the routing decisions

for the nodes by polling the network for information. The MatLab Controller Four was

52

integrated into HANC to expand the information available at each node to include

commodities, security level, performance level, and available bandwidth and CPU.

With NS-2, the network nodes were concerned with sending packets and not

actual files. Each node knew how much bandwidth was available on each available

network path and the destination for the packets. A simple network diagram is shown in

Figure 8 with the associated bandwidth available for each network path.

A

F

C

B

E
D

 9

0 MB

 100 MB

 8
0 MB

 60 MB

 7

5
M

B
 50 MB

Figure 8. Simple Network Diagram

Because of this specification, all input file sizes were considered in Bytes and not

MegaBytes. All data gathered from Step One, gpgTester, was from file sizes of greater

than 1MB. To actually interpolate and optimize the data for packet sizes, the data was

multiplied by 1MB. After interpolation and optimization, the encryptFitter divided by

53

1MB, to return the data back to packet sizes. This assumed that multiplying the file by

1MB would yield the correct interpolated/optimized data (e.g. 100 Bytes would yield the

same results as 100Bytes multiplied by 1MB). Although this was not necessarily a

reasonable assumption, it did allow for direct integration into HANC.

NS-2 via HANC wrote data to a file (encryptin.m) which was read by the MatLab

controller for optimizing the data. Once MatLab completed optimizing the data via

interpolation and binary integer programming, it wrote data to a different file

(encryptout.m) for NS-2’s HANC to read. This circular transfer was completed

repeatedly for the simulations. Figure 8 is a high level view of this transfer.

Figure 9. NS-2 and MatLab Transfer of Information

The encryptin.m file held the parameters for the MatLab controller. When the file

was ready to be read, MatLab, encryptFitter (Controller Four), read it and then called the

runCryptGrav4 program to interpolate the data. Finally, encryptFitter executed a binary

programming solver to optimize the data. The results were written into the encryptout.m

54

file which was then read by NS-2 when available. The results included commodities

numbers (flow numbers) that could be sent, the encrypted file sizes, and encryption times.

55

56

IV. Analysis and Results

4.1 Analysis Overview

The research was divided into four separate parts, the gpgTester executions (Step

One), data interpolation (Step Two), data optimizing (Step Three), and NS-2 simulations

(Step Four). Each section yielded results for analysis and also for input into the

subsequent steps.

4.2 gpgTester Results (Step One)

 The gpgTester program, written in C++ as a front end into gpg, ran

different encryption scheme scenarios thirty times each. The different scenarios varied in

cryptographic algorithm, file size, key strength, and compression. The symmetric key

algorithms were 3DES, AES, BlowFish, CAST5, and TwoFish. The key size used was

128 bit for all of them. In addition, AES was tested with 192 and 256 bit encryption

because gpg allowed 3 different key sizes (128, 192, and 256) for AES only. The public

key algorithms were RSA and ELG-E with different key sizes from 1024 and 4096, with

Elg-E having an additional 768 key size.

The results from gpgTester were fed into Microsoft Excel files. There were 256

separate Excel files generated via the testing. Each encryption scenario was run 30 times.

A sample output of the 30 runs is listed in Table 6 for a 1MB ELG-E with 1792 key size.

Table 6. Elg-E Sample Output from gpgTester
Pub type Pub size Sub type Sub size
RSA 1792 ELG-E 1792

Run Time Input Size Output Size
Decryption
Time

Decryption
Size

1 150 1048576 1049123 170 1048576
2 140 1048576 1049123 170 1048576
3 140 1048576 1049123 170 1048576
4 150 1048576 1049123 150 1048576
5 150 1048576 1049123 170 1048576
6 140 1048576 1049123 160 1048576
7 140 1048576 1049123 160 1048576
8 140 1048576 1049123 170 1048576
9 150 1048576 1049123 140 1048576

10 140 1048576 1049123 160 1048576
11 140 1048576 1049123 170 1048576
12 140 1048576 1049123 170 1048576
13 140 1048576 1049123 160 1048576
14 140 1048576 1049123 160 1048576
15 140 1048576 1049123 170 1048576
16 140 1048576 1049123 160 1048576
17 140 1048576 1049123 160 1048576
18 140 1048576 1049123 180 1048576
19 150 1048576 1049123 160 1048576
20 140 1048576 1049123 170 1048576
21 160 1048576 1049123 170 1048576
22 140 1048576 1049123 160 1048576
23 140 1048576 1049123 160 1048576
24 120 1048576 1049123 170 1048576
25 150 1048576 1049123 160 1048576
26 140 1048576 1049123 150 1048576
27 140 1048576 1049123 170 1048576
28 140 1048576 1049123 170 1048576
29 120 1048576 1049123 160 1048576
30 140 1048576 1049123 160 1048576

Average
Encryption
Time 141.333
Average
Decryption
Time 163.667

Each scenario within gpgTester had a similar output. For a listing of all of the

scenarios, see Section 3.2.2 and Table 1 from Section 3.2.2.

57

Some of the 256 separate Excel files held more than 15 different scenarios. These

files were combined to form 16 averaged files. The total number of encryption schemes

was over 1350 (with each scheme tested 30 times). A sample spreadsheet showing the

average encryption time, decryption, and size difference (encrypted file size minus the

original input file size) is listed in Table 7 for non-compressed and compressed scenarios

(each line was considered a separate scenario) using AES.

Table 7. Sample Averaged Output for AES Scenarios

Keysize Input Size Output Size
Size
Difference

Average
Encryption
Time

Average
Decryption
Time

128 1048576 1048673 97 96 128
128 5242880 5242977 97 259 445
128 10223616 10223713 97 449 820.367
128 15204352 15204449 97 631 1204
128 20185088 20185185 97 822.2 1579.67
128 25165824 25165921 97 1026 1977.33
128 30146560 30146657 97 1218 2367.07
128 35127296 35127393 97 1428 2737.83
128 40108032 40108129 97 1613.9 3118.6
128 45088768 45088865 97 1809.3 3499.7
128 50069504 50069601 97 2009 3877.83
128 55050240 55050337 97 2192 4267.7
128 60030976 60031073 97 2389.47 4623.07
128 65011712 65011809 97 2584.43 5030.4
128 70254592 70254689 97 2783.03 5425.17
128 75235328 75235425 97 2965.33 5809.43
128 80216064 80216161 97 3145.43 6192.3
128 85196800 85196897 97 3363.07 6572.73
128 90177536 90177633 97 3550.33 6938.87
128 95158272 95158369 97 3742.73 7327.03
128 100139008 100139105 97 3923.53 7716.07

bzip2

Keysize Input Size
Average
Output Size

Size
Difference

Average
Encryption
Time

Average
Decryption
Time

128 1162313 188701 -973612 401.667 166.333
128 10437672 2470818 -7966854 2251 1168.33
128 20576925 4740467 -15836458 4404 2215.67
128 31014597 7206106 -23808491 6624 3342.93

58

The analysis of the data from this section included the file comparisons (input file

size compared to the output encrypted file size), the encryption time, and the decryption

time. In general, the stronger key size (longer key) took more time to encrypt and

decrypt.

4.2.1 File Size Comparisons.

Two types of files were used, randomly-generated and non-randomly generated

files (see Section 3.2.2 for an explanation of how the files were generated). Each file size

was tested 30 times. The average file size difference (the encrypted file size minus the

original input file size) was calculated for comparisons.

 4.2.1.1 Non-Compressed File Size Differences

For the 30 different runs, the file size difference remained the same when non-

compression was chosen (very infrequently, a size difference of 1 could be noticed)

regardless of the initial size of the file. In addition, the non-randomly generated file

difference was less than the randomly generated file size. For the symmetric key

algorithms, CAST5, BlowFish, and 3DES had the same file difference (65 Bytes for

random files and 54 Bytes for non-random files), while TwoFish and AES yielded the

same result of 97 Bytes for random files or 86 Bytes for non-random files. Interestingly

enough, the different key sizes for AES (128, 192, and 256) did not change the file size

difference. A sample output for symmetric keys AES, BlowFish, CAST 5, and TwoFish

is shown in Table 8.

59

Table 8. Sample File Size Differences for Symmetric Algorithms

Encryption

Algorithm Key Size Random

Input File Size in

Bytes

Output File Size

in Bytes

File Size

Difference

in Bytes

AES 128 Yes 1048576 1048673 97

 128 Yes 5242880 5242977 97

 192 Yes 55050240 55050337 97

 192 Yes 60030976 60031073 97

 256 Yes 400031744 400031841 97

 256 Yes 500170752 500170849 97

TwoFish 128 Yes 1048576 1048673 97

 128 Yes 10223616 10223713 97

BlowFish 128 Yes 80216064 80216129 65

 128 Yes 85196800 85196865 65

CAST5 128 Yes 70254592 70254657 65

 128 Yes 80216064 80216129 65

AES 128 No 1162313 1162399 86

 128 No 10437672 10437758 86

TwoFish 128 No 20576925 20577011 86

 128 No 31014597 31014683 86

BlowFish 128 No 20576925 20576979 54

 128 No 31014597 31014651 54

CAST5 128 No 1162313 1162367 54

 128 No 10437672 10437726 54

60

When compared to the public key algorithms, all of the symmetric key algorithms

had a significantly smaller file size difference. Figure 10 shows a comparison of the file

size differences for the symmetric and public key algorithms.

Random File Size Differences

0

50

100

150

200

250

300

350

400

CAST5 BlowFish 3DES TwoFish AES RSA1024 ELG768 ELG1024

D
iff

er
en

ce
 in

 B
yt

es

 Figure 10. File Size Differences for Random Files

Unlike AES, the increase in key size increased the file size differences for RSA

and ELG-E. For example, Elg-E with key size 768 had a smaller file size difference than

Elg-E with 1024 key size. Of the two public key algorithms, RSA had smaller file size

differences than ElGamal for all key sizes between 1024 and 4096 (RSA was not tested at

key size 768). Figure 11 shows the file size differences for RSA and ElGamal for the

different key sizes (all file size differences were greater than the symmetric key

differences).

61

RSA and ELG-E
Random File Size Differences

0
200
400
600
800

1000
1200

1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840 4096

Key Sizes

D
iff

er
en

ce
 in

 B
yt

es

ELG-E
RSA

Figure 11. Comparison of Public Key File Size Differences

Similar to the symmetric key algorithms (AES, 3DES, CAST5, BlowFish, and

TwoFish,), the file size differences were slightly less for non-randomly generated files.

For example, RSA with 1024 key size was 213 Bytes (file size difference) for a non-

random file size as opposed to 224 Bytes for a randomly-generated file.

 4.2.1.2 Compressed File Size Differences

The compression of the input file sizes greatly impacted the resulting file size

difference especially for randomly generated files.

The compression of randomly generated files actually yielded a larger file than a

non-compressed file. Two reasons for this are that the compression algorithms (bzip2,

zip, and zlib) were based upon patterns within the files (no patterns mean less

compression) and that the compression utility itself adds overhead to the outputted

encrypted file. The randomly generated files showed little repetitive patterns in the file

size differences except for the zlib test scenarios (for non-compressed, the same file size

62

difference could be seen regardless of initial file size). A sample comparison of non-

compressed versus compressed file size differences is shown in Table 9 for randomly-

generated files using TwoFish.

Table 9. Sample Random File Size Difference Comparison

TwoFish

Input File Size in

Bytes

Output File Size in

Bytes

File Size Difference

in Bytes

Non-Compressed 1048576 1048673 97

 10223616 10223713 97

 20185088 20185185 97

 30146560 30146657 97

 40108032 40108129 97

 50069504 50069601 97

bzip2 1048576 1053868 5292

 10223616 10273894 50278

 20185088 20283678 98590

 30146560 30293862 147302

 40108032 40303630 195598

 50069504 50313807 244303

 The above table shows the file size difference as constant for non-compressed

(discussed in the previous section), however, with the compression algorithms, there were

no constant file size differences. As the input file size increased, the file size difference

increased (significantly) as well. On the other hand, for non-randomly generated files,

the file size difference for compression actually decreased because the compression

utility was able to actually compress the file by finding patterns within the text of the file.

63

Table 10 shows a sample output file size difference for non-randomly generated files for

TwoFish using non-compressed and bzip2 compression.

Table 10. Sample Non-Random File Size Difference Comparison

TwoFish

Input File Size

in Bytes

Output File Size in

Bytes

File Size Difference in

Bytes

Non-Compressed 1162313 1162399 86

 10437672 10437758 86

 20576925 20577011 86

 31014597 31014683 86

bzip2 1162313 188688 -973625

 10437672 2470819 -7966853

 20576925 4740311 -15836614

 31014597 7206048 -23808549

 The random graph for the file size differences (sample graph for RSA is shown in

Figure 12) show that bzip2 yielded the greatest file size difference (biggest output

encrypted file size) while zlib was the smallest (i.e., zlib was better at compressing

randomly generated files).

64

RSA Random File Size Comparisons

0

100000

200000

300000

400000

500000

600000

10
48

57
6

10
22

36
16

20
18

50
88

30
14

65
60

40
10

80
32

50
06

95
04

60
03

09
76

70
25

45
92

80
21

60
64

90
17

75
36

10
01

39
00

8

Input File Size (Bytes)

Fi
le

 D
iff

er
en

ce
 (B

yt
es

)

uncompressed
bzip2
zip
zlib

Figure 12. RSA Random File Size Compression Comparisons

 The other cryptographic algorithms would display graphs similar to the above

graph. The uncompressed output file sizes were far below the other compressed files and

the uncompressed file size difference remained the same for the algorithm despite input

file size increases, unlike the compressed algorithms. Zlib exhibited the smallest output

file size difference for compression algorithms followed by zip.

For the non-random file sizes, bzip2 outperformed the other compression utilities

(zip and zlib) for compressing the files (i.e. a higher negative number corresponded to a

smaller compressed file). Zip was better than zlib for compressing random files. The

files compressed created a significantly smaller file as can be seen by the negative

outcomes in Figure 13. The graph was representative of the other algorithms because

there was no significant difference between the algorithms.

65

RSA Non Random File Size Difference

-25000000

-20000000

-15000000

-10000000

-5000000

0

5000000

1162313 10437672 20576925 31014597

Input File Size (Bytes)

Fi
le

 D
iff

er
en

ce
 (B

yt
es

)

uncompressed
bzip2
zip
zlib

Figure 13. RSA Non-Random File Size Compression Comparisons

Since the file size differences were not constant for compressed utilities,

comparisons between the algorithms were done via the standard deviations. The standard

deviation for non-compression was always 0 because there was no variation in the file

size differences for the different input file sizes for each encryption scenario. The

standard deviations between the file size differences for RSA were similar to ELG-E,

while the file size differences for 3DES, AES, BlowFish, CAST5, and TwoFish were

very similar as well. Because of the similarities between RSA and Elg-E and between the

symmetric algorithms, the next two graphs only show the compression comparisons for

RSA and 3DES for randomly-generated files.

66

RSA Random File Size Deviations

0
100
200
300
400
500
600
700
800
900

1000

1E+06 1E+07 2E+07 3E+07 4E+07 5E+07 6E+07 7E+07 8E+07 9E+07 1E+08

Average Output File Size

St
an

da
rd

 D
ev

ia
tio

n

bzip2
zip
zlib

Figure 14. RSA Random File Size Difference Standard Deviation

3DES Random File Size Differences

0
100
200
300
400
500
600
700
800
900

1000

1E+06 1E+07 2E+07 3E+07 4E+07 5E+07 6E+07 7E+07 8E+07 9E+07 1E+08

Average Output File Size (Bytes)

St
an

da
rd

 D
ev

ia
tio

n
(B

yt
es

)

bzip2
zip
zlib

Figure 15. 3DES Random File Size Difference Standard Deviation

As the above graphs illustrate, for all algorithms, zlib’s standard deviation for the

30 different runs for each scenario was zero or very close to zero, consequently, zlib was

more predictable. The standard deviation for zip was also predictable because its’

67

68

standard deviation remained nearly constant at under 100 while the standard deviation for

bzip2 increased mostly for each size increase.

When the files were not random, the standard deviations displayed more

characteristic differences. Primarily, the standard deviations for zip and zlib were very

close to 0 (more predictable), while the bzip2’s standard deviation showed increases and

decreases. The following input files sizes were used for the non-random testing:

• 1162313 • 20576925

• 10437672 • 31014597

RSA Non-Random File Size Deviations

0

20

40

60

80

100

120

140

188824 2470947 4740593 7206223

Average Output File Size (Bytes)

St
an

da
rd

 D
ev

ia
tio

n
(B

yt
es

)

bzip2
zip
zlib

Figure 16. Non-Random RSA File Size Difference Standard Deviations

Not only did bzip2 show non-predictability within RSA, it also showed non-

predictability with the other algorithms as Figure 17 illustrates.

bzip2 Non-Random File Size Deviations

0

20

40

60

80

100

120

140

160

188701 2470818 4740467 7206106

Average Output File Size (Bytes)

St
an

da
rd

 D
ev

ia
tio

n
(B

yt
es

)

RSA
ELG-E
3DES
AES
BlowFish
CAST5
TwoFish

Figure 17. Bzip2 Non-Random File Size Difference Deviations

All of the algorithms had a significant spike for the average output file size of

approximately 4740400B or 4.7MB (which corresponds to input file size 20576925B or

20.6MB). This could be attributed to the memory of the computer used. Depending

upon the virtual memory available, the compressions under the available virtual memory

could fit into memory but greater than this would require swapping files out of primary

memory for compressing. In order to fit completely into memory, the size of the file

would have to be less than the available virtual memory (other data resides in memory

besides what is needed for encryption and compression). The CAST5 had the most

significant disparities beginning with 51 Bytes standard deviation for the 188701 (.2MB)

output file size and ending with an 11 Byte standard deviation for the greater output file

size (7206106 (7.2MB)). AES had the smallest standard deviations for the different

output file sizes. TwoFish had the highest discrepancy for the output file size of

approximately 7206000 (7.2MB).

69

 4.2.2 Encryption and Decryption Results.

The encryption time for each scenario was measured from the beginning of the

encryption process until the end of the encrypting process. Overall the symmetric key

algorithms required less time to encrypt the files than the public key algorithms.

 4.2.2.1 Encryption and Decryption Results for Non-Compressed Files.

Although 3DES, CAST5, and BlowFish were better on file differences for

random files (see Figure 10 from Section 4.2.1.1), they did not have better encryption run

times. In fact, 3DES had the longest running time as shown in Figures 18 and 19.

Random File Symmetric Encryption
1 to 100MB

0
1000
2000
3000
4000
5000
6000
7000

1 10 20 30 40 50 60 70 80 90

MB Rounded

Ti
m

e
(m

se
c)

CAST5
BlowFish
TwoFish
AES 128
AES 192
AES 256
3DES

Figure 18. Symmetric Encryption for Random Files to 100MB

70

Random File Symmetric Encryption
1 to 1000MB

0
10000
20000
30000
40000
50000
60000
70000

1 20 40 60 80 10
0

50
0

90
0

MB Rounded

Ti
m

e
(m

se
c)

CAST5
BlowFish
TwoFish
AES 128
AES 192
AES 256
3DES

Figure 19. Symmetric Encryption for Random Files to 100MB

In addition, AES with 128 bit encryption had the fastest encryption times. In fact,

AES with larger key sizes of 192 and 256, had faster encryption times than the 128 bit

TwoFish, BlowFish, CAST5, and 3DES. TwoFish was only slightly better than CAST5

for encryption times. All of the symmetric algorithms increased encryption times with

increase input file size. Table 11 shows a comparison of the symmetric key algorithms.

71

Table 11. Symmetric Encryption (msec) for Random File Sizes
Input

(MB) CAST5 BlowFish TwoFish AES 128 AES 192 AES 256 3DES

1 106.667 128.333 105.667 96 101.333 103 141.667
5 318 411.333 322.333 259 274 290 474

10 557 738.367 554.667 449 482.333 514.333 868.333
15 797.167 1080.37 802.9 631 688.7 736.333 1251.67
20 1048.67 1408.37 1039.33 822.2 892.667 963.7 1650.33
25 1303.37 1747 1292 1026 1097.67 1189.67 2044
30 1575.97 2106.67 1549.07 1218 1337.67 1423 2444.33
35 1819.67 2439.33 1814.3 1428 1531.07 1663.67 2843.03
40 2074.67 2781.33 2051 1613.9 1749.6 1899.03 3236
45 2314.77 3113.43 2310.37 1809.3 1957.33 2115.33 3628.67
50 2561.63 3452.67 2567.33 2009 2173.33 2339.77 4041
55 2802.67 3794.43 2800.7 2192 2372.83 2560.6 4443.1
60 3066.4 4139 3035 2389.47 2577.97 2784.67 4816
65 3311.6 4456.37 3275.4 2584.43 2798.33 3011.03 5235.9
70 3572 4837.33 3542.33 2783.03 3023.33 3228.33 5627.33
75 3848.87 5162.67 3768.67 2965.33 3238.77 3450.33 6030.7
80 4074.13 5490.9 4005.53 3145.43 3439.63 3687.33 6441
85 4331.67 5840 4246 3363.07 3646.67 3920.5 6838.2
90 4600.67 6165.37 4504.03 3550.33 3878.03 4158.57 7230.33
95 4832.43 6529.77 4770.83 3742.73 4093.63 4350.4 7626.63

100 5096.5 6839.47 5000.4 3923.53 4289.03 4584.73 8020.43
200 10066.8 13628.7 9907.77 7808.03 8461.03 9054 15960.3
300 15031.7 20423.6 14865.8 11625.1 12689.4 13630.5 23955.3
400 19987.5 27164.8 19842.2 15510.5 16875.9 18144 31890.1
500 24965.5 33907.2 24772.1 19403.3 21040 22655 39833
600 29935.3 40620.6 29650.1 23251.9 25260.2 27165.9 47828.3
700 34987.5 47430.7 34595.8 27073.1 29429.5 31648.9 55888.9
800 39982.7 54270 39445.7 30911.8 33657.4 36230.4 64025
900 45072.8 61130.2 44541.1 34801.4 37779.6 40814.2 71994.6

1000 49980.9 67937.3 49458 38589.3 41980.8 45302.9 79918.2

For symmetric decryption results, the same order for encryption speed was seen in

decryption speed. AES 128 had the fastest decryption times, followed by AES 192, AES

256, TwoFish, CAST5, BlowFish, and lastly 3DES.

72

For public encryption algorithms, RSA performed better than ElGamal for higher

key sizes. ElGamal had faster encryption times for key sizes 1024 and 1280 (key size

768 was only tested with ElGamal. Once the key size increased above 1280, RSA rose

slower than ElGamal and remained rather steady for each input file size across the key

size range. Figure 20 shows the steadiness of RSA encryption time as opposed to

ElGamal’s increasing encryption times for a 10MB file with key sizes from 1024 to 4096.

RSA ELG 10 MB Encryption

500

525

550

575

600

625

650

675

10
24

12
80

15
36

17
92

20
48

23
04

25
60

28
16

30
72

33
28

35
84

38
40

40
96

Key Length

Ti
m

e
(m

se
c)

RSA Encryption
ELG Encryption

Figure 20. RSA and Elg-E 10MB Encryption Time

For RSA’s encryption time increased as the key size increased except for key size

2048. At this key size, the encryption time was less than the encryption time for key size

1024.

A comparison of decryption times for the public key algorithms, show that RSA

has a slightly better decryption time overall than Elg-E above key size 1280. Figure 21

shows a comparison of the decryption times for RSA and Elg-E.

73

RSA ELG 10 MB

850

870

890

910

930

950

1024 1280 1536 1792 2048

Key Length

Ti
m

e
(m

se
c)

RSA Decryption
ELG Decryption

Figure 21. RSA vs. Elg-E Decryption Time Comparisons

 4.2.2.2 Encryption Results for Compressed Files.

The zip compression utility yielded the fastest encryption time for random and

non-random files followed by zlib. Bzip2 had the slowest encryption time. A sample of

the data collected is displayed in figures few of the graphs are displayed below:

AES Non-Random File Encryption Time

0

1000

2000

3000

4000

5000

6000

7000

1 10 20 30

File Size

Ti
m

e
(m

se
c) uncompressed

bzip2
zip
zlib

Figure 22. AES Non-Random File Compressed Comparisons

74

ELG -E Non-Random File
Encryption Time

0
1000
2000
3000
4000
5000
6000
7000
8000

1 10 20 30

File Size

Ti
m

e
(m

se
c) uncompressed

bizp2
zip
zlib

Figure 23. Elg-E Non-Random Compression Comparisons

 4.2.3 Overall Analysis of Algorithms.

 The data gathered from the gpgTester executions was used as input for the

MatLab interpolator and controller. Additionally, the data analysis from this section

combined with the information from the references listed in the bibliography was used to

create the security levels and the performance levels for Controller One and Controller

Three. Because of the requirement within Controller Three for only three algorithms per

security and performance level for binary programming, Controller One and Controller

Three had different encryption schemes for the security and performance levels.

 The security levels were divided into five levels, high (5) to low (1) while the

performance levels ranged from high (3) to low (1). Table 12 lists the encryption choices

for each security and performance levels for Controller One whereas Table 13 lists the

security and performance levels for Controller Three (3 encryption choices per

security/performance level).

75

Table 12. Security and Performance Levels for Controller One
Security

Level

Performance

Level

Encryption

Algorithm

Key Size

1 1 RSA 1024, 1280

1 2 ElGamal 768, 1024, 1280

1 3 3DES,

BlowFish

128

2 1 ElGamal 1536, 1792

2 2 RSA 1536, 1792

2 3 CAST5 128

3 1 ElGamal 2048, 2304, 2560, 2816

3 2 RSA 2048, 2304, 2560, 2816

3 3 AES, TwoFish 128

4 1 ElGamal 3072, 3328, 3584, 3840

4 2 RSA 3072, 3328, 3584, 3840

4 3 AES 192

5 1 ElGamal 4096

5 2 RSA 4096

5 3 AES 256

76

Table 13. Security and Performance Levels for Controller Three
Security

Level

Performance

Level

Encryption and Key Size

1 1 RSA 1280 and 1536; Elg-E 1280

1 2 Elg-E 768 and 1024; RSA 1024

1 3 3DES, BlowFish, CAST 5

2 1 Elg-E 1536 and 1792; RSA 2304

2 2 RSA 1792 and 2048; Elg-E 2048

2 3 CAST5, 3DES, BlowFish

3 1 Elg-E 2816 and 3072; RSA 3072

3 2 RSA 2816 and 2560; Elg-E 2560

3 3 AES, TwoFish, CAST5

4 1 Elg-E 3840 and 3584; RSA 3840

4 2 RSA 3328 and 3584; Elg-E 3328

4 3 AES 192, TwoFish, CAST5

5 1 Elg-E 3840 and 4096; RSA 4096

5 2 Elg-E 3584; RSA 3840 and 3584

5 3 AES 256 and 192; TwoFish

77

4.3 MatLab Interpolation (Step Two)

The results from this step was used as input into the MatLab controllers. The data

from the gpgTester was compiled into one MatLab file, testing1.m. This file was used to

create formatted matrices for the other MatLab files to use. There were 1363 lines of

data compiled into testing1.m. Each line represent one averaged encryption scenario

from the gpgTester. A sample listing of the code is shown below (note: the first line is

included only for reference):

Table 14. Testing1.m Sample File Output
A B C D E F G H I

0 1 0 128 1048576 1048673 97 137.333 936.900

0 5 3 1024 90177536 90216419 38883 11726.600 7813.870

The random file category, A, was a 0 for a randomly generated file and a 1 for a

non-randomly generated file. For the algorithm category (B), AES was 0, TwoFish was

1, CAST5 was 2, 3DES was 3, BlowFish was 4, ElGamal was 5, and RSA was 6. For the

compression category (C), non-compressed was 0, bzip2 was 1, zip was 2, and zlib was

referred to by a 3. The other categories were key size (D), input file size (E), encrypted

output file size (F), file size difference (G), encryption times (H), and decryption times

(I).

During Step Two, cubic splining was performed to interpolate input file sizes with

the data gathered from Step One. For any input file size (within the tested data ranges),

an interpolated output was produced. This interpolated data, when inserted into the

78

original data, would produce a smooth line between the data points as shown in Figures

24 and 25.

0 2 4 6 8 10 12

x 10
8

0

1

2

3

4

5

6
x 10

4

Input File Size in Bytes

O
ut

pu
t E

nc
ry

pt
io

n
Ti

m
e

TwoFish Cubic Spline for Encryption Time

Input Size 49.299MB
Encrypt Time 2529.2

Figure 24. TwoFish Cubic Spline for Encryption

 Figure 24 shows the best curve fit for determining the encryption time for any

given input using TwoFish with 128 bit encryption. In the graph, the input value was

49.299MB. This value is interpolated with the TwoFish results from the gpgTester.

From the gpgTester, the following data is closest to the input file size: 45.089MB with

2310.37 encryption time and 50.070MB with encryption time of 2567.33. The cubic

spline interpolation outputted a 2529.2 encryption time for the 49.299MB file which

places the encryption time between 45.089MB and 50.070MB but closer to the latter as it

should.

79

0 2 4 6 8 10 12

x 10
8

0

2

4

6

8

10

12

14
x 10

8

Input File Size in Bytes

O
ut

pu
t F

ile
 S

iz
e

in
 B

yt
es

RSA 1024 Cubic Spline for Output Size

Input Size 84.828266MB
Output Size 84.828490MB

Figure 25. RSA Cubic Spline for Output File Size

 A sample of the cubic spline for the output file size is shown in Figure 25 for

RSA with 1024 bit encryption. The input file size was 84.828266MB while the output

file size was 84.82849MB. The file size difference was 224 which is the same file size

difference as seen with the gpgTester with RSA at 1024 bits.

4.4 MatLab Controller (Step Three)

The interpolation done in Step Two was fed into the MatLab controllers for

optimizing the commodities that could be sent. The controllers each had unique data

results based upon the function of the controller.

80

 4.4.1 Random Commodity Analysis.

 Controller One and Controller Two employed random number generators for

commodity file size and priority. Random number generators allowed for a wider range

of values to be tested without being subject to researcher’s preferences. A gamma

distribution was used to generate the commodity file sizes while a uniform distribution

was used for the priorities.

A sample histogram of the gamma distribution for file sizes is shown in the Figure

26.

0 50 100 150 200 250 300 350
0

100

200

300

400

500

600

N
um

be
r

of
 C

om
m

od
iti

es

Commodity Size

Gamma Distribution with 1000 Random Numbers

Figure 26. Gamma Distribution for File Sizes

81

The histogram showed that most of the random numbers for commodity file sizes

fell between 0 and 150MB. Several different sample histograms were created but show

basically the same information as illustrated in Figure 26.

For testing purposes, the input file sizes were restricted to 1MB to 100MB (very

rarely are files greater than 100MB and most are under 30 MB). To enforce this

restriction, only numbers between 1MB and 100MB were allowed for the file sizes.

The next histogram (Figure 27) shows a sample modified gamma distribution

with the file size limitations. The shapes of the histogram reveal the reverse exponential

graph similar to the histograms from the non-modified gamma distribution.

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

N
um

be
r

of
 C

om
m

od
iti

es

Commodity Size

Modified Random Distribution for Size

Figure 27. Modified Gamma Distribution for File Size

Although the shapes of Figure 29 and 30 are similar to the non-modified gamma

distribution, the uniformity of the bars are not as consistent as Figure 27. This is because

of the file size restriction. If a randomly generated number via gamma distribution was

82

above 100MB or below 1MB, then this number was not used and another number was

generated instead.

The histogram (Figure 28) for the commodities’ priorities (the goodness) showed

a uniform random distribution and not a reverse exponential increase (each priority from

1 to 100 have an equal probability of occurring).

0 20 40 60 80 100 120
0

20

40

60

80

100

120

N
um

be
r

of
 C

om
m

od
iti

es

Commodity Value

Random Distribution: 1 to 100 with 1000 Random Numbers

Figure 28. Uniform Distribution of Commodity Priorities

 The commodity matrix was a two column matrix with input size and value

(priority). Once the controller obtained the commodity matrix either via random

generators or input files, it proceeded to optimize the data.

4.4.2 Controller One Analysis.

 Controller One used the concept of security levels and performance levels to

optimize the data. Table 12 from Section 4.2.3 shows the encryption schemes per

security and performance level.

83

The controller maximized the commodity by first sorting the commodities from

high to low and then only choosing the encryption scheme (determined by the security

and performance level) which maximized the commodities (i.e. the aggregated encryption

time and encrypted output file size did not exceed the available CPU and available

bandwidth).

 The output from this optimization was a four column matrix with input size,

value, output encrypted file size and encryption time. In addition, the sum of the

priorities (the total goodness), total bandwidth required, and the total CPU required are

also written to the output file. Table 15 shows a sample output file from Controller One.

84

 Table 15. Sample Output from Controller One
1 120000000 3000 20 4 3
2 437 64395928.920 2984.092
3 77241394.300 30
4 6486429.104 84
5 92371565.296 78
6 4709272.829 40
7 46658998.933 40
8 90862156.535 52
9 31074677.131 97
10 88939001.923 90
11 95480951.768 67
12 48285980.266 31
13 57122688.347 37
14 20101790.204 77
15 20802228.353 12
16 4700810.855 34
17 48685609.267 71
18 2756101.424 84
19 29118058.790 3
20 80469714.869 59
21 3976446.057 95
22 14607527.715 35
23 0 0 0 192
24 31074677.131 97 31074774.131 1376.479
25 3976446.057 95 3976543.057 221.327
26 6486429.104 84 6486526.104 325.975
27 2756101.424 84 2756198.424 170.951
28 20101790.204 77 20101887.204 889.359

 Line 1, from the above table, show the available bandwidth, available CPU,

number of commodities to be randomly generated, the security level, and the

performance level, respectively. Line 2 list the total goodness of the commodities

chosen, the amount of bandwidth that will be required, and the amount of CPU needed to

encrypt the commodities. Lines 3 thru 22 list the 20 commodities (file size and priority)

that were randomly generated. Line 23 show the encryption scheme that yielded the

85

maximum number of commodities. Lines 24 thru 28 list the commodities that can be sent

including the output encrypted file size and encryption time.

4.4.3 Controller Two Analysis

Controller Two introduced binary integer programming to optimize the

commodities. It did not utilize the concept of security and performance levels, rather it

used seven encryption schemes per commodity. These seven encryption schemes were

mutually exclusive (at most one encryption scheme was chosen by the solver).

Initially, the testing tried to execute binary integer programming via the bintprog

function installed within MatLab, however, warning messages were periodically received

stating that the results may be inaccurate.

Because of the unpredictability of the bintprog function, a different binary integer

solver was researched and incorporated into MatLab. The new solver, glpk, used a mex

interface to run within MatLab. The same testing done with bintprog was used to test the

accuracy of glpk. Through the testing, glpk did not exhibit any erratic behavior exhibited

by bintprog.

The outputted data from the glpk function included the x vector which represented

the commodities that could be sent (see Section 3.4.4 for the explanation of the vectors

and matrices used for binary integer programming). During the verification process, the

x variables were analyzed to ensure that mutual exclusion was maintained and that the

available CPU and available bandwidth requirement was fulfilled. To verify the accuracy

of the outputted data (encryption times, encrypted file sizes, mutual exclusion of

encryption algorithms) from glpk, hand calculations were used. The hand calculations

86

reviewed each x variable and aggregated the encryption time and encrypted file size for

each variable equal to 1.

The controller read (from an input file) the available bandwidth, available CPU,

and the number of commodities to be generated. The output was sent to a file. It

included the commodities that could be sent. The x vector, the status of the solver, the

total goodness, and the encryption and bandwidth required.

The number of commodities tested ranged from 4 to 100 commodities. Each time

the solver ran, a different set of commodities was used. In addition, the available

bandwidth and available CPU varied as well. During this testing, the solver slowed down

as more commodities were introduced. A problem occurred when Controller Two

attempted to execute the input lines from a file within a for loop (each input line included

the available CPU, available bandwidth, and number of commodities to generate). After

approximately 57 commodities (sometimes less depending on the commodities

generated), MatLab seemed to freeze. However, to work around this problem, the input

lines were fed into the controller one at a time (instead of reading 10 lines of input and

executing in a for loop, it read one line of input and then the program was called again for

the next nine lines of input). By doing this work around, the solver was able to solve for

100 commodities (100 was the limit for this research, however, to verify that this was not

the limit for glpk, higher commodities were tested successfully).

Each line of input was run five times to verify that the solver worked and to view

the range of solutions solved. For analysis to stabilize the input commodities, the same

87

commodities (initially generated randomly) were used for the testing of 5 to 100

commodities, with the same available bandwidth and CPU.

A sample output for five commodities with an input of 70MB available bandwidth

and 3000 seconds for the available CPU yielded the results listed in Table 16.

Table 16. Sample Output File for Controller Two
1 Input line 70000000 3000 5

2 Sum Totals 225 62350813 2997

3 Commodity 1 2063745.786 84

4 Commodity 2 58624370.173 81

5 Commodity 3 1662180.473 60

6 Commodity 4 53546860.907 62

7 Commodity 5 31546633.470 65

8 x vector

9 Status 5

10 Time 0

11 memory 2954.688

12 Commodities to

send

Row 1 is the input line read into the Controller for five commodities. Row 2 is

the sum totals for the goodness (the priorities), encrypted file size, and encryption time

88

for the commodities chosen. Row 3 to Row 7 refer to the five commodities requested

(file size and priority). Row 8 is the x vector which holds the values of the optimum

decision variables for the solver. Row 9 is the status of the optimization. Line 10 refers

to the time in seconds for the solved solution. Row 11 refers to the amount of memory

required by the solver in Kilobytes. Lastly, Row 12 refers to the commodities that can be

sent based upon the x vector.

The x vector for the sample (every other commodity shaded) was

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. There were three ones

for the x variable corresponding to commodity 1, 2 and 3. Commodity 1 used encryption

scheme 3, commodity 2 used encryption scheme 6, while Commodity 3 used encryption

scheme 5.

The status field of the output refers to the state of the optimization after the solver

terminated. There were six general status codes plus error codes possible:

• 1 = solution was undefined

• 2 = solution was feasible

• 3 = solution was infeasible

• 4 = no feasible solution existed

• 5 = solution was optimal

• 6 = solution was unbounded

• 101 – 110 = error code (10 different error codes)

89

The commodities to be sent was written in matrix form where each commodity

had nine different columns. Table 17 shows the actual commodities to be sent for the

above sample.

Table 17. Sample Commodities to Send for Controller Two
1 2 3 4 5 6 7 8 9

2063745.786 84 3 0 4 0 128 2063810.786 199.098

58624370.173 81 6 0 5 0 1024 58624725.173 2657.994

1662180.473 60 5 0 1 0 128 1662277.473 140.382

Only 3 commodities out of the 5 requested were chosen for transmission.

Columns 1 and 2 (from Table 17) refer to the original commodities. Column 3 refers to

the encryption scheme number. Note, the numbers are the same as the x variables chosen

(3, 6, and 5). Columns 4 to 7 refer to the actual encryption scheme. Column 4 referred to

whether or not the interpolation should use the random file data (from gpgTester).

Column 5 referred to the encryption type (AES was 0, TwoFish was 1, CAST5 was 2,

3DES was 3, BlowFish was 4, Elg-E was 5, and RSA was 6). Column 6 referred to

whether or not compression should be used. Column 7 referred to the key size for the

algorithm. Column 8 lists the encrypted file size. Finally, Column 9 list the encryption

time.

Column 8 was added together to determine the amount of bandwidth the three

commodities would require and likewise for Column 9 to determine the amount of CPU.

90

A compilation of another sample using 120MB as the available bandwidth and

5000 as the available CPU is shown in Table 18.

Table 18. Compilation of Controller Two Output
of

Commodities

to

Send

Time

for

Solver

Memory for

Solver

Goodness

Total

Encrypted File

Size Total

Encryption

Time Total

5 4 0 2999.316 290 93897189.9 4987.178

10 6 0 2999.316 409 107047826.6 4981.642

20 8 0 2999.316 580 116931260.1 4995.799

30 12 0 2999.316 783 110070128.9 4999.14

40 14 0 2999.316 899 106841591.5 4990.108

50 15 1 2999.316 1023 107961098.6 4998.682

60 16 2 2999.316 1049 107160660.9 4998.986

70 16 2 2999.316 1049 107160660.9 4998.986

80 16 3 2999.316 1082 106587650.4 4999.787

90 16 4 3091.422 1082 106587650.4 4999.787

100 17 3 3091.422 1145 104502014.9 4989.059

The above chart shows that the solver tries to maximize the encryption time and

the encrypted file size while still attempting to maximize the number of commodities that

can be sent. The greatest number of commodities were for 17 commodities for an initial

100 commodities. The memory requirements for 100 commodities were very similar to

the requirements for 5 initial commodities. The time for the solver only increased slowly

after 50 initial commodities, however, the time decreased by 1 for 100 commodities. As

expected the goodness total increased with an increase in input commodities. Note, this

91

data was reflective of other test runs with different initial input commodities. The

characteristics were the same for solver time (between 0 and 4 observed), solver memory

requirements (between 90 to 3100 was observed), and goodness total. The number of

commodities sent, however, was dependent upon the randomly generated commodity file

sizes and priorities.

4.4.4 Controller Three Analysis

Controller Three merged the security and performance levels with the binary

integer solver to determine which commodities could be transmitted. This controller did

not use randomly generated commodities but rather the commodities from an input file

(similar to NS-2 output files).

Each commodity input line included the input file size, priority, security level,

and performance level. Each of the security and performance levels were translated into

three available encryption schemes as listed in Table 13 in Section 4.2.3. These three

encryption schemes became the basis for the mutual exclusions for the constraints matrix,

A (See Section 3.4.5 for an explanation of binary integer programming including the

constraints matrix).

The output file included the same items as Controller Two plus the original

security and performance level for the commodity. For a sample of the type of output

captured, see Table 17 from Section 4.4.3.

4.5 Analysis of NS-2 Simulations (Step Four)

The simulations from NS-2 provided the commodities, the available bandwidth,

available CPU, and the security and performance level for each commodity. The format

92

was the same format as the Controller Three, however, for simulation purposes, the

output did not include the x variable output.

To actually run the simulations, input and output files were used to transfer data

from MatLab to NS-2. The NS-2 simulations were run via the Hybrid Agent for Network

Control, a tool created by John Pecarina in his research of agent based frameworks

(Pecarina, 2008).

A sample line from an output file is:

1 10000000.000 60 3 1 0 5 0 3072 10000867.000000000 575.648

The first five values were the original values sent via the input file. These values

list the commodity flow number, the commodity file size, and priority followed by the

security and performance levels. The Controller Four (encryptFitter) determined the

maximum commodities that could be sent and added six additional values to each line of

the commodity (that was chosen). These additional values were the four values for the

encryption scheme (randomness, algorithm, compression, and key size), the required

encrypted file size, and the encryption time.

4.6 Comparison of Binary Solver and Non-Binary Solver

 There were two different methods for optimizing the number of commodities that

could be transmitted at a node, a non-binary solver (Controller One) and a binary solver

(Controllers Two, Three, and Four). The comparison was between Controller One and

Controller Two because the other controllers build on Controller Two. In order to

compare the output from the different types of solvers, the input data had to be the same,

93

therefore, the random generation of the commodities were frozen, i.e., the same

commodities were used for each controller comparison. In addition, the security and

performance levels were not used for Controller One. Both Controllers used the same

seven encryption schemes.

 Overall Controller 2 using binary integer programming allowed more

commodities for transmission and higher sums for the priorities. Table 19 shows a

sample comparison.

Table 19. Sample Comparison of Controllers
 # of Initial

Commodities

Available

BW

MB

Available

CPU

(Sec)

Total

Goodnes

s

of

Commodities

to Transmit

Controller 1 5 70 3000 225 3

Controller 2 5 70 3000 225 3

Controller 1 20 120 5000 508 6

Controller 2 20 120 5000 580 8

Controller 1 40 120 5000 630 7

Controller 2 40 120 5000 899 14

Controller1 100 120 5000 580 7

Controller 2 100 120 5000 1145 17

The controllers using binary integer solver was able to maximize the output better

than the non-binary integer solver. Controller 1 became more inefficient as the number

94

95

of commodities increased whereas Controller 2 was able to increase efficiency even when

the bandwidth and CPU remained constant as the commodity number increased.

V. Conclusions and Recommendations

5.1 Summary of Research

 Dialable cryptography for wireless networks provides users with the means to

control their security requirements especially in a dynamically changing environment.

 The research used two public key (RSA and ElGamal) and five symmetric key

(AES, 3DES, TwoFish, BlowFish, and CAST5) algorithms. Although public key

encryption is normally not used to encrypt a file, it was used in the testing. Periodically,

public keys could be used to encrypt files especially since the encryption keys are public

whereas for symmetric key algorithms, the keys must be shared prior to encrypting.

 With any encryption algorithm, there are weaknesses within the

encryption scheme and some encryption algorithms are considered better than others.

Regardless, a “cryptosystem is secure if the best known attack requires as much work as

an exhaustive key search. By this definition, a secure cryptosystem with a small number

of keys could be easier to break than an insecure cryptosystem with a large number of

keys.” (Stamp, 2006). In other words, larger key sizes can increase the security of public

and symmetric key algorithms.

 By dividing the encryption algorithms into different security levels and

performance levels, users do not need to know the actual encryption algorithm but rather

their estimate of the security required and of the performance requirements. Furthermore,

the MatLab controller conceals the binary integer programming (optimization) and data

interpolation from the user.

96

 The analysis of the gpgTester was instrumental in the data collected from the

interpolation and optimization steps. Because of this interdependency, a thorough

analysis of the gpgTester data was required prior to completing the other steps.

 The interpolation of the data from the gpgTester was used by the MatLab

controller for optimizing. The data interpolation was limited to encryption and primarily

to non-compressed algorithms. For future research, the initial data must be varied

enough to support interpolation of different requirements including compression.

 The controllers provided three different methods for optimizing (security and

performance levels, binary integer programming, and a combination of the two) the

commodities. These three different methods can be used to meet different user’s

objectives for the commodities.

 The fourth controller was basically the same as the third controller but was used

to integrate into a network agent (HANC) via NS-2.

 A major conclusion from the analysis of the controllers is that the binary integer

solver maximized the number of commodities that can be sent and maximized the sum of

the commodities’ priorities.

5.2 Future Research

The research conducted focused on the objective of creating a controller to

determine encryption algorithms based upon security and performance levels for the

transmission of the maximum number of commodities within the available bandwidth

and CPU. The research assumed that the bandwidth was correct as inputted, future

research could delve into actually determining the bandwidth for wireless networks. In

97

addition, more work would be needed into determining what the security and

performance level dials should be. This would require researching security policies and

incorporating these policies into the performance and security levels of the encryption

algorithms.

 Although only seven encryption algorithms were used, future research could use

other encryption algorithms to encrypt packets with a size range of under 1MB. The

research only investigated file sizes of over 1MB. In addition, another research

possibility would be to change the cryptographic algorithm for different blocks within a

file similar to the AdaptCrypt created by Manzanares (Manzanares, Camara et al., 2005).

Different encryption schemes for one file or packet would make it more secure during

transmission.

Regardless of different encryption algorithms or methods of dividing the files or

packets, the research presented in this thesis provide a foundation for incorporating a

dialable security and performance solution with binary integer programming to optimize

commodities that can be transmitted over a wireless or wired network.

5.3 Significance of Research

Wireless technology provides the military a direct and immediate communication

path between commanders and the battlespace. This path can be between sensors,

warfighters with JTRS or “militarized” cell phones or PDAs, unmanned vehicles, highly

sensorized aircraft, or via wireless networks.

 The technology has inherent vulnerabilities that the military must address to

continue to provide confidentiality, integrity, and availability of its resources and to

98

provide decision makers an intelligent view of the battlespace. To do this, security is

paramount in the utilization of wireless technology. Research into securing wireless

resources will benefit the military and its operations.

 NetD must address the security requirements of wireless devices as our forces

become more mobile and more technically advanced.

Using adaptive security, a system can exist in a less secure but higher performing

state for normal operations and then can adapt to a more secure and usually less

performing state when negative factors arise within or outside the system. Because it is

adaptive, the system can utilize different cryptographic algorithms.

This research lays a foundation for adapting the cryptographic algorithms for

transmitting packets or files based upon the dynamics within a wireless or wired

environment, namely, available bandwidth, available CPU, the particular commodity

(size and priority), and the security and performance levels. By creating the controllers to

facilitate adaptive cryptography, this thesis provides three methods for selecting

encryption schemes for maximizing the number of commodities that can be transmitted

from a node.

The first method, Controller One, uses the security levels and performance levels

to determine a range of encryption schemes. From this range, an optimal encryption

scheme is chosen. Controller Two uses a binary integer solver to determine the optimal

encryption scheme while Controller Three combines security levels and performance

levels in solving the binary integer problem. These three controllers provide a method to

99

100

automate encryption selections (Controller Two), to override a binary solution, and

provide more user input (Controller One), or if necessary, combine the selection process.

Appendix 1 GpgTester

The gpgTester was written in C++ by Matt Weeks. Some modifications were

made to ensure the output data was consistent with the encryption algorithms. It was

used to test different cryptographic algorithms and file sizes by using system calls to the

GPG tool. GPG (GNU Privacy Guard) is a free public key cryptographic command line

tool for encrypting and decrypting data and for creating digital signatures using the

OpenPGP standard defined by RFC 2440. The version used in this research was version

1.4.5 with copywrite 2006 from Free Software Foundation, Inc.

The cryptographic algorithms supported by GPG were:

• Public key: RSA, RSA-E, RSA-S, Elg-E, DSA

• Cipher key: 3DES, CAST5, BLOWFISH, AES, AES 192, AES256, TWOFISH

• Hash: MD5, SHA1, RIPEMD160, SHA256, SHA384, SHA512, SHA224

• Compression: Uncompressed, ZIP, ZLIB, BZIP2

For this research only RSA, ElGamal, AES, AES 192, 3DES, AES 256, TwoFish,

BlowFish, and CAST5 were used along with the various compression options (no hash

testing, although gpgTester supported hashes).

The key length (or size) varied for RSA and ElGamal. The RSA key could not go

below 1024 while ElGamal could go as low as 768. The default for generating keys is

DSA and ElGamal with a default size of 1024. (Kidwell 2005)

GPG stores the public and private key on the computer for public key

cryptography. For security, GPG encrypts the private key with a short passphrase

(usually good to have a random string of words for the passphrase).

101

Working within a cygwin environment, gpgTester generated random files for encrypting

and decrypting using different algorithms. By trying different sizes with different

cryptographic algorithms, the gpgTester was verified to work as required regardless of

the algorithm or size file chosen.

 To verify that the random files were actually distinct, a separate program,

testingDiff.cpp, was created with primarily the same code as gpgTester. TestingDiff.cpp

created and saved 30 random files (the same number of files generated by gpgTester).

These files were then compared to each other to verify that the files were indeed distinct

from each other.

 Since gpgTester made system calls to gpg, the algorithms chosen by the user was

verified to ensure that the actual algorithm was run via the system calls. To do this

verification on the encrypted file, a decryption was necessary. The decryption stated

what algorithm was used to encrypt the file.

102

Appendix 2 List of Computer Code Generated

For this research, the following programs were created:

1. gpgTester – This is the front end for gpg. This was written in C++. It made

system calls to gpg with randomly generated files.

2. testingDiff – This code was written in C++ to verify that the random files

generated by gpgTester were indeed random.

3. gpgTesterFile – This was the same code as gpgTester but it called gpg with non-

random files.

4. inputCreate3DES, inputCreateAES, inputCreateBlowFish, inputCreateRSA,

inputCreateElg, inputCreateCAST5, inputCreateTwoFish – These files (all

MatLab) read the Results.xls spreadsheet and wrote the output to testing1.M file

to create a matrix for the controllers. See Figure 29 for an interaction of these

files.

5. inputVariable.m –This file read the data from the matrix testing1.m and output a

formatted matrix for other MatLab files.

6. createMatrixA.m – This was used to generate the correct constraints matrix, A.

7. indeSecurity.m, indeSecurity3.m– These files were used to determine the

encryption scheme based upon the security and performance levels.

8. securityAlg.m – This file was used to collect the seven different encryption

algorithms for Controller Two.

9. inputCommodities.m – This file randomly generated the input file size and

priority per commodity.

103

10. runCryptGrav, runCryptGrav2, runCryptGrav3 – These files performed the data

interpolation for the given input file size.

11. inputCrypt, inputCrypt2, inputCrypt3 – These were the files which corresponded

to Controller One, Two, and Three respectively. They optimized the data from

the runCryptGrav files.

12. encryptFitter – This file was used to generate output files for the NS-2

simulations.

104

Figure 29. MatLab Files Interaction

105

Bibliography

1. Alampalayam, S.P. and A. Kumar, An Adaptive Security Model for Mobile
Agents in Wireless Networks. Globecom, 2003: p. 6.

2. ANSI Website. [cited 15 Dec 2007]; Available from: http://www.ansi.org/.

3. Bandera, C., et al., Wireless Just-in-Time Training of Mobile Skilled Support
Personnel. Proc. of SPIE, 2006. (62500R-1).

4. Basagni, S., et al., Secure Pebblenets. MobiHOC, 2001: p. 8.

5. Bass, M.S.D., The Challenges of Information Management in the Networked
Battlespace: Unmanned Aircraft Systems, Raw Data and the Warfighter, in
AFIT/ENG. 2006, Air Force Institute of Technology: Wright Patterson Air Force
Base. p. 54.

6. Bidigare, P., C. Kreucher, and R. Conti, A Tracking Approach to Localization and
Synchronization in Mobile Ad-hoc Sensor Networks. Proc. of SPIE, 2006.
(62490l-1).

7. Blyler, J. Wireless Roots Pay Off for Defense Technology. 2004 [cited May 18,
2007]; Wireless technology and how the military has advanced it and now how
the commercial market is advancing it]. Available from:
http://www.wsdmag.com/Articles/Print.cfm?ArticleID=8360.

8. Brezillon, P. and G.K. Mostefaoui. Context-Based Security Policies: A New
Modeling Approach. in Second IEEE Annual Conference on Pervasive
Computing and Communications Workshops. 2004.

9. Chigan, C., Y. Ye, and L. Li, Balancing Security against Performance in Wireless
Ad Hoc and Sensor Networks. IEEE, 2004: p. 5.

10. Defense, D.o., Use of Commercial Wireless Devices, Services, and Technologies
in the Department of Defense (DoD) Global Information Grid (GIG), D.o.
Defense, Editor. 2004.

11. Fahey, L.S., Joint Command and Control on the Move (C2OTM). MilCom, 2005.
(Joint Systems Integration Command).

106

12. Franz, M.T.P., Information Operations Foundations to Cyberspace Operations:
Analysis, Implementation Concept, and Way-Ahead for Network Warfare Forces.
2007, Air Force Institute of Technology: Wright Patterson Air Force Base. p. 172.

13. Graham, D.F., K.M. Hopkinson, and S.R. Graham, On-Demand Key Distribution
for Mobile Ad-Hoc Networks. 2007, Air Force Institute of Technology: Wright
Patterson Air Force Base. p. 14.

14. Guenther, R.B. and A. Kharab, An Introduction to Numerical Methods: A MatLab
Approach. 2002, New York: Chapman & Hall.

15. Hinton, H., et al., SAM: Security Adaptation Manager, Ryerson Polytechnic
University, Canada

16. Kang, K.-D. and S.H. Son. Systematic Security and Timeliness Tradeoffs in Real-
Time Embedded Systems. in 12th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications. 2006: IEEE.

17. Kidwell, B. A Practical Introduction to GNU Privacy Guard in Windows. 2005
[cited 2007 March 22]; Available from:
http://www.glump.net/dokuwiki/gpg/gpg_intro.

18. Laboratory, A.F.R., AFRL Develops Intrusion Detection and Policy Monitoring
for Wireless Networks: Wright Patterson Air Force Base, Ohio.

19. Mais Nijim, X.Q., Tao Xie, Adaptive Quality of Security Control in Networked
Parallel Disk Systems.

20. Manzanares, A.I., J.M.S. Camara, and J.T. Marquez, On the Implementation of
Security Policies with Adaptative Encryption. ScienceDirect, 2005: p. 9.

21. MatLab Website. [cited 2008 Jan 8, 2008]; Available from:
http://www.mathworks.com/products/optimization/description6.html.

22. Melloy, M.J.R., Wireless Sensor Network Applications for the Combat Air
Forces, in AFIT Eng. 2006, Air Force Institute of Technology: Wright Patterson
Air Force Base. p. 84.

23. Mollin, R.A., Codes: The Guide to Secrecy from Ancient to Modern Times.
Discrete Mathematics and Its Applications, ed. K.H. Rosen. 2005,Boca Raton:
Chapman and Hall/CRC.

107

24. Nijim, M., X. Qin, and T. Xie, Adaptive Quality of Security Control in
Networked Parallel Disk Systems. IEEE, 2006: p. 6.

25. Pecarina, J.M, Creating an Agent Based Framework to Maximize Information
Utility. 2008. Air Force Institute of Technology, Wright Patterson Air Force Base.

26. Pucker, L., Trends in DSP: Can the Military Use Commercial Wireless Signal
Processing Technologies to Reduce Size, Weight, and Power in Radio Devices, in
IEEE Communications Magazine. 2007.

27. Raissi, J., Dynamic Selection of Optimal Cryptographic Algorithms in Runtime
Environment, in 2006 IEEE Congress on Evolutionary Computation. 2006:
Sheraton Vancouver Wall Centre Hotel, Vancouvr, British Columbia, Canada.

28. Rhodes, K.A. and G.C. Wilshusen, Information Security: Federal Agencies Need
to Improve Controls over Wireless Networks, G.A. Office, Editor. 2005.

29. Sastry, A.R., Autonomous Mobile Mesh Networks and Applications for Defense
Network-Centric Operations. Proc. of SPIE, 2006. (62490R-1): p. 10.

30. Soliman, H.S. and M. Omar. Application of Synchronous Dynamic Encryption
System in Mobile Wireless Domains. in First ACM (Association for Computer
Machinery) International Workshop on Quality of Service and Security in
Wireless and Mobile Networks. 2005. Montreal, Quebec, Canada.

31. Spline Website. [cited 15 Dec 2007]; Available from:
http://end.wikipedia.org/wiki/Spline_(mathematics).

32. Stamp, M., Information Security: Principles and Practice. 2006, Hoboken, NJ:
Wiley and Sons, Inc.

33. Tomlinson, P.G. and J.C. Ricklin, Tactical Optical Systems for a Network-Centric
Environment. Proc. of SPIE, 2006. (624909).

34. Yalmip Website. [cited 8 Feb 2008]; Available from:
http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php?n=Solvers.BINTPROG.

35. Zou, J., K. Lu, and Z. Jin, Architecture and Fuzzy Adaptive Security Algorithm in
Intelligent Firewall. IEEE, 2002(0-7803-7625-0/02): p. 5.

108

109

Vita

Major Marnita Thompson Eaddie graduated from Shaw High in East Cleveland,

Ohio. She completed her undergraduate studies at Bowdoin College in Brunswick,

Maine in 1990 with a degree in Chemical Physics and a minor in Computer Science. She

was commissioned in 1997 through the Air Force Officer Training School.

Her first assignment was at Robins Air Force Base, Georgia with the 93rd Air

Control Wing, JSTARS in 1997 where she stood up the Information Assurance Office for

JSTARS. She later transferred to Kirtland Air Force Base, New Mexico to work with

AFOTEC in 2001. Her next assignment (in 2004) was to Ottawa, Ontario where she

worked directly with the Canadian Military in delivering a national command and control

system to the Canadian Forces. In August 2006, she entered the Air Force Institute of

Technology under the Information Assurance Scholarship Program. Upon graduation,

she will be assigned to Incirlik Air Base, Turkey.

 Form Approved
REPORT DOCUMENTATION PAGE OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From – To)

27-03-2008 Master’s Thesis October 2006 – March 2008
5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE

5b. GRANT NUMBER

DIALABLE CRYPTOGRAPHY FOR WIRELESS
NETWORKS 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER
JON # 08-175

6. AUTHOR(S)

5e. TASK NUMBER Marnita Thompson Eaddie, Major, USAF

 5f. WORK UNIT NUMBER

8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology REPORT NUMBER

 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

10. SPONSOR/MONITOR’S
ACRONYM(S)
AFOSR/NL

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Robert Bonneau
AFOSR/NL 11. SPONSOR/MONITOR’S REPORT

NUMBER(S) 875 North Randolph Street, Suite 325, Room 3112
Arlington, Virginia 22203 DSN 426-9545
12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The objective of this research is to develop an adaptive cryptographic protocol, which allows users to select an optimal
cryptographic strength and algorithm based upon the hardware and bandwidth available and allows users to reason about the level
of security versus the system throughput. In this constantly technically-improving society, the ability to communicate via
wireless technology provides an avenue for delivering information at anytime nearly anywhere. Sensitive or classified
information can be transferred wirelessly across unsecured channels by using cryptographic algorithms. The research presented
will focus on dynamically selecting optimal cryptographic algorithms and cryptographic strengths based upon the hardware and
bandwidth available. The research will explore the performance of transferring information using various cryptographic
algorithms and strengths using different CPU and bandwidths on various sized packets or files.

This research will provide a foundation for dynamically selecting cryptographic algorithms and key sizes. The
conclusion of the research provides a selection process for users to determine the best cryptographic algorithms and strengths to
send desired information without waiting for information security personnel to determine the required method for transferring.
This capability will be an important stepping stone towards the military’s vision of future Net-Centric Warfare capabilities.

15. SUBJECT TERMS
Adaptive cryptography, binary integer programming, wireless network

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Dr. Kenneth M. Hopkinson

18.
NUMBER

17. LIMITATION
OF

 OF ABSTRACT 19b. TELEPHONE NUMBER (Include area code) a.
REPORT

b.
ABSTRACT

c. THIS
PAGE PAGES

(937) 255-3636, ext 4579
125 UU U U U (Kenneth.hopkinson@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

AFIT/GCO/ENG/08-02

	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	Dedication
	 Acknowledgments
	Quote
	List of Figures
	List of Tables
	Acronyms
	I. Introduction
	1.1 Motivation
	1.2 Overview of Adaptive Security
	1.3 Military Requirement for Wireless Technology
	1.4 Overview of Research

	II. Literature Review
	2.1 Underlying Theme
	2.2 DSOCARE
	2.3 MANET Frameworks/Models
	2.4 WAHSN
	2.5 DRE
	2.6 Parallel Disk Systems Model
	2.7 AdaptCrypt
	2.9 Context-Based Security
	2.10 SAM

	III. Methodology
	3.1 Methodology Overview
	3.2 gpgTester (Step One)
	3.2.1 gpgTester Explanation.
	3.2.2 gpgTester Scenarios.
	3.2.3 gpgTester Verification.

	3.3 MatLab Interpolation (Step Two)
	3.3.1 Overview of Interpolation.
	3.3.2 Transfer Data to MatLab File.
	3.3.3 Data Interpolation.
	3.3.4 Output File Size and Encryption Time Determination.
	3.3.4.1 runCryptGrav.
	3.3.4.2 runCryptGrav2.
	3.3.4.3 runCryptGrav3.

	3.4 MatLabController (Step Three)
	3.4.1 Overview of MatLab Controller.
	3.4.2 Random Distribution of Commodities.
	3.4.3 inputCrypt Controller (Controller One)
	3.4.4 inputCrypt2 Controller (Controller Two)
	3.4.5 inputCrypt3 Controller (Controller Three).

	3.5 NS-2 Simulations (Step Four)

	IV. Analysis and Results
	4.1 Analysis Overview
	4.2 gpgTester Results (Step One)
	4.2.1 File Size Comparisons.
	 4.2.1.1 Non-Compressed File Size Differences
	 4.2.1.2 Compressed File Size Differences

	 4.2.2 Encryption and Decryption Results.
	 4.2.2.1 Encryption and Decryption Results for Non-Compressed Files.
	 4.2.2.2 Encryption Results for Compressed Files.

	 4.2.3 Overall Analysis of Algorithms.

	4.3 MatLab Interpolation (Step Two)
	4.4 MatLab Controller (Step Three)
	 4.4.1 Random Commodity Analysis.
	4.4.2 Controller One Analysis.
	4.4.3 Controller Two Analysis
	4.4.4 Controller Three Analysis

	4.5 Analysis of NS-2 Simulations (Step Four)
	4.6 Comparison of Binary Solver and Non-Binary Solver

	V. Conclusions and Recommendations
	5.1 Summary of Research
	5.2 Future Research
	5.3 Significance of Research

	Appendix 1 GpgTester
	Appendix 2 List of Computer Code Generated
	Bibliography
	Vita

